Hyperboloid_ruled_surface_animation_v2.gif (370 × 470 pixels, file size: 9.87 MB, MIME type: image/gif, looped, 181 frames, 16 s)
![]() | This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary

This diagram was created with Mathematica.
DescriptionHyperboloid ruled surface animation v2.gif |
English: An illustration of the the generation of a hyperboloid of revolution as the surface of revolution of a slanted line, also featuring all possible angles at which the line can be slanted to create a unique hyperboloid (thus including its two degenerate forms - a cone and an open cylinder).
This is the second version - the code has been cleaned up slightly and is now parallelized, and the bottom grid markings in the circle now spin as the slant changes as inspired by File:Cylinder - hyperboloid - cone.gif. This may not necessarily be superior to the first version - the motion of the circle grid markings might distract from the change in the line's slant. |
Date | |
Source | Own work |
Author | Lemondoge |
Other versions |
|
Source code InfoField | Mathematica code(* config *)
frames = 60; (*frame count for first generation loop *)
offset = -Pi + 0.8; (* ensure favorable "alignment" *)
(* From the Mathematica stack exchange:
https://mathematica.stackexchange.com/a/10958/89865;
function by user Sjoerd C. de Vries; CC BY-SA 4.0 *)
splineCircle[m_List, r_, angles_List : {0, 2 \[Pi]}] :=
Module[{seg, \[Phi], start, end, pts, w, k}, {start, end} =
Mod[angles // N, 2 \[Pi]];
If[end <= start, end += 2 \[Pi]];
seg = Quotient[end - start // N, \[Pi]/2];
\[Phi] = Mod[end - start // N, \[Pi]/2];
If[seg == 4, seg = 3; \[Phi] = \[Pi]/2];
pts =
r RotationMatrix[start] . # & /@
Join[Take[{{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1,
0}, {-1, -1}, {0, -1}}, 2 seg + 1],
RotationMatrix[seg \[Pi]/2] . # & /@ {{1,
Tan[\[Phi]/2]}, {Cos[\[Phi]], Sin[\[Phi]]}}];
If[Length[m] == 2, pts = m + # & /@ pts,
pts = m + # & /@
Transpose[
Append[Transpose[pts], ConstantArray[0, Length[pts]]]]];
w = Join[
Take[{1, 1/Sqrt[2], 1, 1/Sqrt[2], 1, 1/Sqrt[2], 1},
2 seg + 1], {Cos[\[Phi]/2], 1}];
k = Join[{0, 0, 0}, Riffle[#, #] &@Range[seg + 1], {seg + 1}];
BSplineCurve[pts, SplineDegree -> 2, SplineKnots -> k,
SplineWeights -> w]] /; Length[m] == 2 || Length[m] == 3
k[a_, b_, t_] := a + (b - a)*t^3
f[u_, v_,
skew_ : 2 Pi/3] := {Cos[u + offset], Sin[u + offset],
1} (v) + {Cos[u + skew + offset],
Sin[u + skew + offset], -1} (1 - v)
borderWidth = -BorderDimensions[
ParametricPlot3D[f[u, v, 2 Pi/3], {u, 0, 2 Pi}, {v, 0, 1},
PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}, Axes -> False,
Boxed -> False, ViewPoint -> {1.3, -3, 2}]] + 2;
(*generate table*)
hyperbList =
ParallelTable[
ImagePad[Module[{p = 3 (j/frames)^2 - 2 (j/frames)^3},
Show[
ParametricPlot3D[f[u, v], {u, 0, p*2 Pi}, {v, 0, 1},
ColorFunction ->
Function[{x, y, z, u},
RGBColor[k[0.880722, 0, u*p], 0.611041, k[0.142051, 1, u*p],
1 - (u*p)^3]], Boxed -> False, Axes -> False,
ViewPoint -> {1.3, -3, 2},
PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}},
PlotPoints -> Ceiling[125 j/frames + 2],
MeshFunctions -> {#5 &}],
Graphics3D[{
(* custom-bake the v mesh, and add other thingamabobbers *)
GrayLevel[0.2],
Table[
Line[{f[2 Pi/16*i, 0], f[2 Pi/16*i, 1]}], {i, 1,
Floor[p*16]}],
Thick, Blue,
splineCircle[{0, 0 , 1}, 1],
splineCircle[{0, 0, -1}, 1],
Black,
Line[{f[0, 0], f[0, 1]}],
Line[{f[p*2 Pi, 0], f[p * 2 Pi, 1]}],
PointSize[0.03],
Point[{f[0, 0], f[0, 1]}],
Point[{f[p*2 Pi, 0], f[p * 2 Pi, 1]}],
GrayLevel[0.2],
Line[{f[p*2 Pi, 1], {0, 0,
1}, {Cos[p*2 Pi + offset + 2 Pi/3],
Sin[p*2 Pi + offset + 2 Pi/3], 1}, f[p*2 Pi, 0]}],
splineCircle[{0, 0, 1},
1/4, {p*2 Pi + offset, p*2 Pi + offset + 2 Pi/3}],
Line[{{0, 1, -1}, {0, -1, -1}}],
Line[{{1, 0, -1}, {-1, 0, -1}}],
Line[{{0, 0, 1}, {0, 0, -1}}]
}]
]
], borderWidth], {j, 1, frames}];
(* add frame of u = 0 manually *)
PrependTo[hyperbList, ImagePad[Graphics3D[
{Thick, Blue,
splineCircle[{0, 0 , 1}, 1],
splineCircle[{0, 0, -1}, 1],
Black,
Line[{f[0, 0], f[0, 1]}],
PointSize[0.03],
Point[{f[0, 0], f[0, 1]}],
GrayLevel[0.2],
Line[{f[0, 1], {0, 0, 1}, {Cos[offset + 2 Pi/3],
Sin[offset + 2 Pi/3], 1}, f[0, 0]}],
splineCircle[{0, 0, 1}, 1/4, {offset, offset + 2 Pi/3}],
Line[{{0, 1, -1}, {0, -1, -1}}],
Line[{{1, 0, -1}, {-1, 0, -1}}],
Line[{{0, 0, 1}, {0, 0, -1}}]
},
Boxed -> False, Axes -> False,
PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}},
ViewPoint -> {1.3, -3, 2}],
borderWidth]];
(* Show transition into cone *)
frames2 = 60;
AppendTo[hyperbList,
Splice @ParallelTable[
ImagePad[Module[{p = 3 (j/frames2)^2 - 2 (j/frames2)^3},
Show[
ParametricPlot3D[
f[u, v, (2 + p) Pi/3], {u, 0, 2 Pi}, {v, 0, 1},
ColorFunction ->
Function[{x, y, z, u},
RGBColor[k[0.880722, 0, u], 0.611041, k[0.142051, 1, u],
1 - (u)^3]], Boxed -> False, Axes -> False,
ViewPoint -> {1.3, -3, 2},
PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}},
PlotPoints -> 127,
MeshFunctions -> {#5 &}],
Graphics3D[{
(* custom-bake the v mesh, and add other thingamabobbers *)
GrayLevel[0.2],
Table[Line[{f[2 Pi/16*i, 0, (2 + p) Pi/3],
f[2 Pi/16*i, 1, (2 + p) Pi/3]}], {i, 1, 16}],
Thick, Blue,
splineCircle[{0, 0 , 1}, 1],
splineCircle[{0, 0, -1}, 1],
Line[{f[2 Pi, 1, (2 + p) Pi/3], {0, 0,
1}, {Cos[offset + (2 + p) Pi/3],
Sin[offset + (2 + p) Pi/3], 1}, f[2 Pi, 0, (2 + p) Pi/3]}],
splineCircle[{0, 0, 1},
1/4, {2 Pi + offset, 2 Pi + offset + (2 + p) Pi/3}],
Black,
Line[{f[0, 0, (2 + p) Pi/3], f[0, 1, (2 + p) Pi/3]}],
Line[{f[2 Pi, 0, (2 + p) Pi/3], f[2 Pi, 1, (2 + p) Pi/3]}],
PointSize[0.03],
Point[{f[0, 0, (2 + p) Pi/3], f[0, 1, (2 + p) Pi/3]}],
Point[{f[2 Pi, 0, (2 + p) Pi/3], f[2 Pi, 1, (2 + p) Pi/3]}],
GrayLevel[0.2],
Line[{{Cos[p (Pi/3)],
Sin[p (Pi/3)], -1}, {-Cos[p (Pi/3)], -Sin[p (Pi/3)], -1}}],
Line[{{Cos[p (Pi/3) + Pi/2],
Sin[p (Pi/3) + Pi/2], -1}, {-Cos[p (Pi/3) + Pi/2], -Sin[
p (Pi/3) + Pi/2], -1}}],
Line[{{0, 0, 1}, {0, 0, -1}}]
}]
]
], borderWidth], {j, 1, frames2}]];
(* Show transition to cylinder *)
frames3 = 60;
AppendTo[hyperbList,
Splice @ParallelTable[
ImagePad[Module[{p = 3 (j/frames3)^2 - 2 (j/frames3)^3},
Show[
ParametricPlot3D[
f[u, v, (3 - 3 p) Pi/3], {u, 0, 2 Pi}, {v, 0, 1},
ColorFunction ->
Function[{x, y, z, u},
RGBColor[k[0.880722, 0, u], 0.611041, k[0.142051, 1, u],
1 - (u)^3]], Boxed -> False, Axes -> False,
ViewPoint -> {1.3, -3, 2},
PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}},
PlotPoints -> 127,
MeshFunctions -> {#5 &}],
Graphics3D[{
(* custom-bake the v mesh, and add other thingamabobbers *)
GrayLevel[0.2],
Table[Line[{f[2 Pi/16*i, 0, (3 - 3 p) Pi/3],
f[2 Pi/16*i, 1, (3 - 3 p) Pi/3]}], {i, 1, 16}],
Thick, Blue,
splineCircle[{0, 0 , 1}, 1],
splineCircle[{0, 0, -1}, 1],
Line[{f[2 Pi, 1, (3 - 3 p) Pi/3], {0, 0,
1}, {Cos[offset + (3 - 3 p) Pi/3],
Sin[offset + (3 - 3 p) Pi/3], 1},
f[2 Pi, 0, (3 - 3 p) Pi/3]}],
splineCircle[{0, 0, 1},
1/4, {offset, offset + (3 - 3 p) Pi/3}],
Black,
Line[{f[0, 0, (3 - 3 p) Pi/3], f[0, 1, (3 - 3 p) Pi/3]}],
Line[{f[2 Pi, 0, (3 - 3 p) Pi/3],
f[2 Pi, 1, (3 - 3 p) Pi/3]}],
PointSize[0.03],
Point[{f[0, 0, (3 - 3 p) Pi/3], f[0, 1, (3 - 3 p) Pi/3]}],
Point[{f[2 Pi, 0, (3 - 3 p) Pi/3],
f[2 Pi, 1, (3 - 3 p) Pi/3]}],
GrayLevel[0.2],
Line[{{Cos[(1 - 3 p) (Pi/3)],
Sin[(1 - 3 p) (Pi/
3)], -1}, {-Cos[(1 - 3 p) (Pi/3)], -Sin[(1 - 3 p) (Pi/
3)], -1}}],
Line[{{Cos[(1 - 3 p) (Pi/3) + Pi/2],
Sin[(1 - 3 p) (Pi/3) +
Pi/2], -1}, {-Cos[(1 - 3 p) (Pi/3) +
Pi/2], -Sin[(1 - 3 p) (Pi/3) + Pi/2], -1}}],
Line[{{0, 0, 1}, {0, 0, -1}}]
}]
]
], borderWidth], {j, 1, frames3}]];
Export["hyperboloidAnim2.gif", hyperbList,
"DisplayDurations" -> {1, Splice@ConstantArray[1/15, frames - 1], 1,
Splice@ConstantArray[1/15, frames2 - 1], 1,
Splice@ConstantArray[1/15, frames3 - 1], 1}]
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public ___domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Captions
An illustration of the the generation of a hyperboloid of revolution as the surface of revolution of a slanted line, also featuring all possible angles at which the line can be slanted to create a unique hyperboloid
Items portrayed in this file
depicts
16 May 2024
image/gif
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 23:30, 16 May 2024 | ![]() | 370 × 470 (9.87 MB) | Lemondoge | Uploaded own work with UploadWizard |
File usage
The following page uses this file: