File:TNOs-wide-view.svg

This is a file from the Wikimedia Commons. The description on its description page there is copied below.
Summary
DescriptionTNOs-wide-view.svg |
English: Plot of perihelion (q; y-axis) vs. semi-major axis (a; x-axis) and period of 3766 trans-Neptunian objects (TNOs) and other Solar System bodies with perihelion q>23.5 AU. Colors show the objects' main dynamical categories. The size of each dot is scaled to the size of the object, and notable TNOs are labeled. Major orbital resonances with Neptune are labeled on the x-axis; some objects are in other, higher-order resonances.
For a few large objects, the diameter drawn represents actual measurements, obtained via stellar occultation, thermal emission, or direct imaging. For all others, the circles represent the assumed diameter based on the mean albedo for each dynamical category. Based on a similar diagram by Renerpho: File:KBOs and resonances.png Size data is from Johnston's Archive (15 July 2025): https://johnstonsarchive.net/astro/tnoslist.html. Orbital data is from JPL Solar System Dynamics (18 July 2025): https://ssd.jpl.nasa.gov/tools/sbdb_query.html |
Date | |
Source | Own work |
Author | Thunkii |
Other versions |
File:TNOs-wideview-inclination.svg (inclination) File:KBOs and resonances.png (original by Renerpho) |
SVG development InfoField | ![]() This W3C-invalid plot was created with Matplotlib. |
Python source InfoField | click to expand
import matplotlib.ticker
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from adjustText import adjust_text
from matplotlib import font_manager
##This code creates plots of TNO dynamics and characteristics from csv data files derived from Johnston's Archive (size data) and JPL's Small Body Dynamics database (orbital data).
#A lot of things are customizable if you change the values below.
##Plotting options and parameters
#Name of the files
johnstonfile='tnos.csv'
jplfile='sbdb_query_results(1).csv'
#Font and background layout
matplotlib.rcParams['font.sans-serif'] = "Lato"
plt.rcParams['legend.title_fontsize'] = 'large'
plt.style.use('dark_background')
#Figure layout and size
fig = plt.figure(figsize=(18, 8))
ax = fig.add_axes([0.032,0.065,0.950,0.83])
colorlegendloc=[0.09,1]
sizelegendloc=[0.01,1]
#Labels
fileout='tnos-testaq-jpl-cc'
maintitle= 'Trans-Neptunian objects'
xlabel = 'Semi-major axis (AU)'
secxlabel = 'Period (years)'
ylabel = 'Perihelion (AU)'
grouptitle = 'Dynamical groups'
sizetitle = 'Diameter (km)'
restitle = 'Resonances'
sizecircles=[50,100,200,500,1000,2000] #sizes of the size circles
#Params and axis limits. Reasonable values for ylim:
#perihelion: [23.5,82.5], minor ticks every 5.
#eccentricity: [0,1], [0,0.4] (KBOs), minor ticks every 0.05
#inclination: [-4,115], [-2,50] (KBOs), minor ticks every 5 or 10
paramx='a_y'
paramy='q_y'
axis_doublelog=True #make a log(log(x)) axis for semi-major
xlim=[34.1995,3000]
ylim=[23.5,82.5]
xticks=[40,50,60,70,80,90,100,200,300,400,500,600,700,800,900,1000,2000,3000]
xticklabels=['40','50','60','','80','','100','200','','400','','600','','','','1,000','2,000','3,000']
secxticks=[200,300,400,500,600,700,800,900,1000,2000,3000,4000,5000,6000,7000,8000,9000,10000,20000,30000,40000,50000,60000,70000,80000,90000,100000]
secxticklabels=['200','300','400','500','600','','800','','1,000','2,000','','4,000','','6,000','','','','10,000','20,000','','','50,000','','','','','100,000']
minorxtickspace=5
minorytickspace=5
#circle parameters
sizescale=np.sqrt(10)/150 #size of circles
circlewidth=1/600 #width of circle edges
maxcirclewidth=1.5 #maximum width
labelsize=1.6 #text size scale of labels
#Colors for the groups. If you want to label Haumeids, add a separate class_dict entry for Haumea, and change color_dict to match.
class_dict = {'Resonant TNO':'red', 'Plutino':'orange', 'Cold cubewano':'blue', 'Hot cubewano':'deepskyblue', 'Other TNO':'#8b2be2', 'Scattered disk':'lightgrey', 'Centaur':'lawngreen','Extended scattered disk':'#f14cc1','Extreme detached disk':'indianred','Sednoid':'yellow'}
#Defining the main resonances to be marked. These won't be shown if they lie outside the axis bounds.
neptuneorbit=30.07 #AU
mainres=[5/4, 4/3, 7/4, 5/3, 7/3, 2, 5/2, 7/2, 9/2, 3, 4, 5, 6]
minorres=[7,8,9,10,11,12,11/2,8/3,10/3,11/3,9/4,11/4,13/4,7/5,8/5,9/5,11/5,12/5,11/6,10/7,11/7,12/7,11/9]
mainresstr=['5:4','4:3','7:4','5:3','7:3','2:1','5:2','7:2','9:2','3:1','4:1','5:1','6:1']
minorresstr=['7:1','8:1','9:1','10:1','11:1','12:1','11:2','8:3','10:3','11:3','9:4','11:4','13:4','7:5','8:5','9:5','11:5','12:5','11:6','10:7','11:7','12:7','11:9']
#Resonance tick/label params
restick=[23.5,24.5]
reslabelloc=24.7
restitleloc=[105,24]
#manual label adjustments go here. This is going to be different for each plot, good luck!
xoffset=[0,0,0,3,2, -8,-14,-7,0.5, -0.5,-23,0,0, 0,0,1.5,-44,-9.5, 0,1.5,-6,-28,0.5]
yoffset=[0,0,0,-21,-26.5, 1,-42,25,-11, -9,-45,0,0, 0,1,-2.5,0,2, -10,-5,3,38,0.5]
#arrows: play around with shrinkB until the arrow terminates on the *outside* of the circle for readability.
arrowprops=[None for i in range(23)]
arrowprops[7]={'arrowstyle':'-', 'color':'lightgrey', 'lw': 0.5, 'relpos': (0.1,0.2),'shrinkB':8}
arrowprops[10]={'arrowstyle':'-', 'color':'lightgrey', 'lw': 0.5, 'relpos': (0.1,0.8),'shrinkB':9.5}
arrowprops[21]={'arrowstyle':'-', 'color':'lightgrey', 'lw': 0.5, 'relpos': (0.3,0.2),'shrinkB':9.2}
#arrowprops[10]={'arrowstyle':'-', 'color':'#8b2be2', 'lw': 0.5, 'relpos': (0.2,0.2),'shrinkB':15}
##Main Code
pd.options.display.max_rows=100
#read in data, filter by high condition code, make sure it's in both johnston's and JPL
johnston=pd.read_csv(johnstonfile, delimiter=";",skipinitialspace=True)
johnston['pdes']=johnston['number'].str.strip(to_strip="()").fillna(johnston['provisional'])
jpl=pd.read_csv(jplfile)
tnos=pd.merge(johnston, jpl, how='inner', on='pdes')
tnofil=tnos[tnos['condition_code']<=7]
#Filter the notable TNOs that should be labeled. This is all custom.
largetnos=tnofil[(tnofil['diameter_x']>210) | ((tnofil['name_x'].isin(['Alicanto'])) | tnofil['dynamics'].isin(['Sednoid']))]
#largetnos=tnofil[(tnofil['diameter']>150)]
largetnos=largetnos[(~largetnos['dynamics'].isin(['other TNO'])) | ((largetnos['diameter_x']>499) & (largetnos['q_y']>50)) | (largetnos['diameter_x']>1000)]
largetnos=largetnos[(~largetnos['dynamics'].isin(('cubewano-hot', 'cubewano-cold', 'Haumea', 'cubewano', 'plutino', 'SDO', 'twotino', 'Centaur', 'Nep Trj L4', 'Nep Trj L5')) & ~largetnos['dynamics'].str.contains('res')) | (largetnos['diameter_x']>600)|((~tnofil['name_x'].isna()))]
largetnos=largetnos[(~largetnos['dynamics'].isin(['SDO'])) | (largetnos['diameter_x']>700) | ((~tnofil['name_x'].isna())) | (largetnos['a_y']>80)]
largetnos=largetnos[(~largetnos['dynamics'].isin(('cubewano-hot', 'cubewano-cold', 'Haumea', 'cubewano', 'plutino'))|(tnofil['diameter_x']>1500))]
#largetnos=largetnos[~((largetnos['dynamics']=='SDO') & (largetnos['name_x'].isna()) & (largetnos['a_y']<85))]
largetnos['name_x']=largetnos['name_x'].fillna(largetnos['provisional']) #add provisional desig to name to those with no names yet
print(largetnos[['name_x','provisional','diameter_x']])
#more subgroups for analysis
namedtnos=tnos[~tnos['name_x'].isna()]
p9tnos=tnofil[(tnofil['q_x']>=35) & (tnofil['a_x']>=200)]
large=tnos.sort_values(by= 'diameter_x', ascending=False)
largetnos=largetnos.reset_index()
namedtnos=namedtnos.reset_index()
#print(tnos.sort_values(by='t_jup').head(100)[['number','name_x','t_jup']])
color_dict = {'cubewano-cold': class_dict['Cold cubewano'], 'cubewano-hot': class_dict['Hot cubewano'], 'cubewano': class_dict['Hot cubewano'],
'plutino': class_dict['Plutino'], 'twotino': class_dict['Resonant TNO'], 'Nep Trj L4': class_dict['Resonant TNO'], 'Nep Trj L5': class_dict['Resonant TNO'],
'res 1:3': class_dict['Resonant TNO'], 'res 1:4': class_dict['Resonant TNO'], 'res 1:5': class_dict['Resonant TNO'], 'res 1:6': class_dict['Resonant TNO'],
'res 1:7': class_dict['Resonant TNO'], 'res 1:8': class_dict['Resonant TNO'], 'res 1:9': class_dict['Resonant TNO'], 'res 1:10': class_dict['Resonant TNO'], 'res 1:11': class_dict['Resonant TNO'],
'res 2:5': class_dict['Resonant TNO'], 'res 2:7': class_dict['Resonant TNO'], 'res 2:9': class_dict['Resonant TNO'], 'res 2:11': class_dict['Resonant TNO'],
'res 3:4': class_dict['Resonant TNO'], 'res 3:5': class_dict['Resonant TNO'], 'res 3:7': class_dict['Resonant TNO'], 'res 3:8': class_dict['Resonant TNO'], 'res 3:10': class_dict['Resonant TNO'], 'res 3:11': class_dict['Resonant TNO'],
'res 4:5': class_dict['Resonant TNO'], 'res 4:7': class_dict['Resonant TNO'], 'res 4:9': class_dict['Resonant TNO'], 'res 4:11': class_dict['Resonant TNO'], 'res 4:13': class_dict['Resonant TNO'],
'res 5:7': class_dict['Resonant TNO'], 'res 5:8': class_dict['Resonant TNO'], 'res 5:9': class_dict['Resonant TNO'], 'res 5:11': class_dict['Resonant TNO'], 'res 5:12': class_dict['Resonant TNO'],
'res 6:11': class_dict['Resonant TNO'], 'res 7:10': class_dict['Resonant TNO'], 'res 7:11': class_dict['Resonant TNO'], 'res 7:12': class_dict['Resonant TNO'], 'res 9:11': class_dict['Resonant TNO'],
"SDO": class_dict['Scattered disk'], 'Haumea': class_dict['Hot cubewano'], "ESDO": class_dict['Extended scattered disk'], "EDDO": class_dict['Extreme detached disk'], "Sednoid": class_dict['Sednoid'],
'Centaur': class_dict['Centaur'],'Apollo': class_dict['Centaur'], 'Amor': class_dict['Centaur'], 'unusual': class_dict['Centaur'], 'Damocloid': class_dict['Centaur'], 'other TNO': class_dict['Other TNO'],
'Ura Trj L4': class_dict['Resonant TNO'], 'comet': class_dict['Centaur']}
colors=tuple(map(color_dict.get, tnofil['dynamics']))
largecolors=tuple(map(color_dict.get,largetnos['dynamics']))
namedcolors=tuple(map(color_dict.get,namedtnos['dynamics']))
##Plotting
#defining fancy log formatters for various stuff (those end up unused)
class myformatter(matplotlib.ticker.LogFormatter):
def _num_to_string(self, x, vmin, vmax):
if x > 1000000:
s = '%1.0e' % x
elif x < 1 and x >= 0.001:
s = f'{x:n}'
elif x < 0.001:
s = '%1.0e' % x
else:
s = f'{x:n}'
return s
def my_locs(self, locs=None):
b = self._base
c = np.geomspace(1, b, int(b)//int(locs) + 1)
self._sublabels = set(np.round(c))
#Title and axis labels.
ax.set_title(maintitle,size='24',y=1.07)
ax.set_xlabel(xlabel, size=16)
ax.set_ylabel(ylabel, size=16)
#set length of minor ticks to same as major to avoid wonkiness
ax.tick_params(which='minor', length=3.5)
#formatter shenanigans for testing, not used in final plot
#formatter = myformatter(labelOnlyBase=False, minor_thresholds=(5, 2.5))
#formatter2 = myformatter(labelOnlyBase=False, minor_thresholds=(5, 2.5))
#fmt = matplotlib.ticker.StrMethodFormatter("{x:g}")
#ax.get_xaxis().set_minor_formatter(formatter)
#ax.get_xaxis().set_major_formatter(fmt)
#Double-log x scale and ticks for semi-major axis.
if axis_doublelog==True:
ax.set_xlim(xlim)
ax.set_xscale("functionlog", functions=(
lambda x: np.log10(np.log10(x)),
lambda x: 10**((10**(x)))))
ax.set_xticks(xticks, labels=xticklabels)
else:
ax.set_xlim(xlim)
ax.xaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(minorxtickspace))
#Linear y scale and ticks.
ax.set_ylim(ylim)
ax.yaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(minorytickspace))
#Defining the secondary x scale for orbital period, with ticks and label; this will be a**(3/2).
def period(x):
return x**(3/2)
def invper(x):
return x**(2/3)
secax = ax.secondary_xaxis('top', functions=(period, invper))
secax.set_xlabel(secxlabel)
secax.tick_params(which='minor', length=3.5)
if axis_doublelog==True:
secax.set_xscale("functionlog", functions=(
lambda x: np.log10(np.log10(x**(2/3))),
lambda x: (10**((10**(x))))**(3/2)))
secax.set_xticks(secxticks, labels=secxticklabels)
else:
secax.set_xscale("functionthreehalf", functions=(
lambda x: x**(2/3),
lambda x: x**(3/2)))
secax.set_xticks(secxticks, labels=secxticklabels)
#Uncomment this if you insist on using a linear scale for a. This will create reasonable ticks.
#ax.set_xticks(np.concat((np.arange(30,110,10),np.arange(150,2350,50))))
#secax.set_xticks(np.concat(([160],np.arange(200,1100,100), np.arange(1500,5500,500),np.arange(6000,11000,1000), np.arange(12000,42000,2000),np.arange(40000,115000,5000))))
#Plot the circles for each TNO
normalpoints=ax.scatter(tnofil[paramx], tnofil[paramy], s=(tnofil['diameter_x']*sizescale)**2, facecolors='none', edgecolors=colors, linewidths=np.minimum(maxcirclewidth,tnofil['diameter_x']*circlewidth))
#Plot the labels on the notable tnos
textsize=np.floor(labelsize*np.log(largetnos['diameter_x']))
diameters=largetnos['diameter_x']*sizescale*(np.sqrt(2250)/100)
#generate labels
ann=[ax.annotate(largetnos['name_x'][i],(largetnos[paramx][i], largetnos[paramy][i]),xytext=(diameters[i]+xoffset[i], diameters[i]+yoffset[i]), textcoords='offset points',size=str(textsize[i]), color=largecolors[i], arrowprops=arrowprops[i], annotation_clip=False, bbox=dict(pad=-2, facecolor="none", edgecolor="none")) for i in range(largetnos.shape[0])]
#Mark the main resonance positions
#Make resonance lines, orange for plutinos. Note it's currently given in data coordinates, but you can use axis coordinates like so to avoid confusion:
#ax.vlines([1, 2], 0, 0.2, transform=ax.get_xaxis_transform(), colors='r')
ax.vlines(neptuneorbit*(3/2)**(2/3), restick[0], restick[1], colors='orange', label='3:2')
[ax.vlines(neptuneorbit*(mainres[i])**(2/3), restick[0], restick[1], colors='red') for i in range(len(mainres))]
#[ax.vlines(neptuneorbit*(minorres[i])**(2/3), ylim[0], ylim[0]+ylim[1]/60, colors='red', lw=0.5) for i in range(len(minorres))]
#Make resonance labels (again, in data coordinates)
ax.text(neptuneorbit*(3/2)**(2/3), reslabelloc, '3:2', color='orange',horizontalalignment='center')
[ax.text(neptuneorbit*(mainres[i])**(2/3), reslabelloc, mainresstr[i], color='red',horizontalalignment='center') for i in range(len(mainres))]
#[ax.text(neptuneorbit*(minorres[i])**(2/3), ylim[0]+ylim[1]/50, minorresstr[i], color='red',horizontalalignment='center', size='small') for i in range(len(minorres))]
#Resonance text (again, in data coordinates)
ax.text(restitleloc[0], restitleloc[1], restitle, color='red',size='large')
#creating the legends
circles=[]
circle2=[]
#make some tiny circles for labeling the colors, then put the legend box in a nice place. I used 375 km circles, but you can change this.
for value in class_dict.values():
circles.append(plt.Line2D([], [], color='None', marker='o', markersize=375*sizescale, markeredgecolor=value,mew=np.minimum(maxcirclewidth, 375*circlewidth)))
#circles for labeling the sizes, in white
for size in sizecircles:
circle2.append(plt.Line2D([], [], color='None', marker='o', markersize=size*sizescale, markeredgecolor='white',mew=np.minimum(maxcirclewidth,size*circlewidth)))
legend1=ax.legend(circles, class_dict.keys(), numpoints=1, bbox_to_anchor=colorlegendloc, loc='upper left', labelcolor=class_dict.values(), title=grouptitle, frameon=False)
legend2=ax.legend(circle2, sizecircles, numpoints=1, bbox_to_anchor=sizelegendloc, loc='upper left', title=sizetitle,labelspacing=3,reverse=True, frameon=False, handletextpad=2)
ax.add_artist(legend1)
ax.add_artist(legend2)
#Save the final figures we have created, as both large png and svg
fig.savefig(fileout+'.svg', transparent=False)
fig.savefig(fileout+'.png',dpi=750)
|
Licensing



- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Captions
23 July 2025
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 23:35, 11 August 2025 | ![]() | 1,728 × 768 (3.12 MB) | Thunkii | New naming: 2013 FY27=Chiminigagua. Also full precision JPL elements used. |
22:30, 28 July 2025 | ![]() | 1,728 × 768 (3.12 MB) | Thunkii | Minor fixes, adding additional resonance marker | |
20:20, 23 July 2025 | ![]() | 1,728 × 768 (3.12 MB) | Thunkii | Size of 2014 EZ51 fixed; erroneously drawn as 1260 km instead of 630 due to transcription error in Johnston's Archive | |
07:56, 23 July 2025 | ![]() | 1,728 × 768 (3.12 MB) | Thunkii | Uploaded own work with UploadWizard |
File usage
There are no pages that use this file.
Global file usage
The following other wikis use this file:
- Usage on en.wikipedia.org
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Width | 1296pt |
---|---|
Height | 576pt |