File originale (file in formato SVG, dimensioni nominali 800 × 600 pixel, dimensione del file: 41 KB)
Logo di Commons
Logo di Commons
Questo file e la sua pagina di descrizione (discussione · modifica) si trovano su Wikimedia Commons (?)

Dettagli

Descrizione
English: Electric field around a large and a small conducting sphere at opposite electric potential. The shape of the field lines is computed exactly, using the method of image charges with an infinite series of charges inside the two spheres, shown in red and blue. In reality, the field is created by a continuous charge distribution at the surface of each sphere and the field lines inside the sphere don't exist. Field lines are always orthogonal to the surface of each sphere.
Data
Fonte Opera propria
Autore Geek3
Altre versioni
SVG sviluppo
InfoField
 
Il codice sorgente di questo file SVG è valido.
 
Questa grafica vettoriale è stata creata con VectorFieldPlot.
 
This file uses embedded text.
Codice sorgente
InfoField

Python code

# paste this code at the end of VectorFieldPlot 1.10
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
u = 100.0
doc = FieldplotDocument('VFPt_metal_balls_largesmall_transparent',
    commons=True, width=800, height=600, center=[400, 300], unit=u)

# define two spheres with position, radius and charge
s1 = {'p':sc.array([-1.0, 0.]), 'r':1.5}
s2 = {'p':sc.array([2.0, 0.]), 'r':0.5}

# make charge proportional to capacitance, which is proportional to radius.
s1['q'] = s1['r']
s2['q'] = -s2['r']
d = vabs(s2['p'] - s1['p'])
v12 = (s2['p'] - s1['p']) / d

# compute series of charges https://dx.doi.org/10.2174/1874183500902010032
charges = [[s1['p'][0], s1['p'][1], s1['q']], [s2['p'][0], s2['p'][1], s2['q']]]
r1 = r2 = 0.
q1, q2 = s1['q'], s2['q']
q0 = max(fabs(q1), fabs(q2))
for i in range(10):
    q1, q2 = -s1['r'] * q2 / (d - r2), -s2['r'] * q1 / (d - r1), 
    r1, r2 = s1['r']**2 / (d - r2), s2['r']**2 / (d - r1)
    p1, p2 = s1['p'] + r1 * v12, s2['p'] - r2 * v12
    charges.append([p1[0], p1[1], q1])
    charges.append([p2[0], p2[1], q2])
    if max(fabs(q1), fabs(q2)) < 1e-3 * q0:
        break

field = Field({'monopoles':charges})

# draw symbols
for c in charges:
    doc.draw_charges(Field({'monopoles':[c]}), scale=0.6*sqrt(fabs(c[2])))

gradr = doc.draw_object('linearGradient', {'id':'rod_shade', 'x1':0, 'x2':0,
    'y1':0, 'y2':1, 'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#666', 0), ('#ddd', 0.6), ('#fff', 0.7), ('#ccc', 0.75),
    ('#888', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradr)
gradb = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53',
    'cy':'0.54', 'r':'0.55', 'fx':'0.65', 'fy':'0.7',
    'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25),
    ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradb)

ball_charges = []
for ib in range(2):
    ball = doc.draw_object('g', {'id':'metal_ball{:}'.format(ib+1),
        'transform':'translate({:.3f},{:.3f})'.format(*([s1, s2][ib]['p'])),
        'style':'fill:none; stroke:#000;stroke-linecap:square', 'opacity':0.5})
    
    # draw rods
    if ib == 0:
        x1, x2 = -4.1 - s1['p'][0], -0.9 * s1['r']
    else:
        x1, x2 = 0.9 * s2['r'], 4.1 - s2['p'][0]
    doc.draw_object('rect', {'x':x1, 'width':x2-x1,
        'y':-0.1/1.2+0.01, 'height':0.2/1.2-0.02,
        'style':'fill:url(#rod_shade); stroke-width:0.02'}, group=ball)
    
    # draw metal balls
    doc.draw_object('circle', {'cx':0, 'cy':0, 'r':[s1, s2][ib]['r'],
        'style':'fill:url(#metal_spot); stroke-width:0.02'}, group=ball)
    ball_charges.append(doc.draw_object('g',
        {'style':'stroke-width:0.02'}, group=ball))

# find well-distributed start positions of field lines
def get_startpoint_function(startpath, field):
    '''
    Given a vector function startpath(t), this will return a new
    function such that the scalar parameter t in [0,1] progresses
    indirectly proportional to the orthogonal field strength.
    '''
    def dstartpath(t):
        return (startpath(t+1e-6) - startpath(t-1e-6)) / 2e-6
    def FieldSum(t0, t1):
        return ig.quad(lambda t: sc.absolute(sc.cross(
            field.F(startpath(t)), dstartpath(t))), t0, t1)[0]
    Ftotal = FieldSum(0, 1)
    def startpos(s):
        t = op.brentq(lambda t: FieldSum(0, t) / Ftotal - s, 0, 1)
        return startpath(t)
    return startpos

startp = []
def startpath1(t):
    phi = 2. * pi * t
    return (sc.array(s2['p']) + 1.5 * sc.array([cos(phi), sin(phi)]))
start_func1 = get_startpoint_function(startpath1, field)
nlines1 = 16
for i in range(nlines1):
    startp.append(start_func1((0.5 + i) / nlines1))

def startpath2(t):
    phi = 2. * pi * (0.195 + 0.61 * t)
    return (sc.array(s1['p']) + 1.5 * sc.array([cos(phi), -sin(phi)]))
start_func2 = get_startpoint_function(startpath2, field)
nlines2 = 14
for i in range(nlines2):
    startp.append(start_func2((0.5 + i) / nlines2))

# draw the field lines
for p0 in startp:
    line = FieldLine(field, p0, directions='both', maxr=7.)
    
    arrow_d = 2.0
    of = [0.5 + s1['r'] / arrow_d, 0.5, 0.5, 0.5 + s2['r'] / arrow_d]
    doc.draw_line(line, arrows_style={'dist':arrow_d, 'offsets':of})
doc.write()

Licenza

Io, detentore del copyright su quest'opera, dichiaro di pubblicarla con la seguente licenza:
w:it:Creative Commons
attribuzione condividi allo stesso modo
Tu sei libero:
  • di condividere – di copiare, distribuire e trasmettere quest'opera
  • di modificare – di adattare l'opera
Alle seguenti condizioni:
  • attribuzione – Devi fornire i crediti appropriati, un collegamento alla licenza e indicare se sono state apportate modifiche. Puoi farlo in qualsiasi modo ragionevole, ma non in alcun modo che suggerisca che il licenziante approvi te o il tuo uso.
  • condividi allo stesso modo – Se remixi, trasformi o sviluppi il materiale, devi distribuire i tuoi contributi in base alla stessa licenza o compatibile all'originale.

Didascalie

Aggiungi una brevissima spiegazione di ciò che questo file rappresenta

Elementi ritratti in questo file

raffigura

image/svg+xml

Cronologia del file

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

Data/OraMiniaturaDimensioniUtenteCommento
attuale22:05, 30 dic 2018Miniatura della versione delle 22:05, 30 dic 2018800 × 600 (41 KB)Geek3User created page with UploadWizard

Nessuna pagina utilizza questo file.

Utilizzo globale del file

Anche i seguenti wiki usano questo file:

Metadati