The hartree (symbol: Eh), also known as the Hartree energy, is the unit of energy in the atomic units system, named after the British physicist Douglas Hartree. Its CODATA recommended value is Eh = 4.3597447222060(48)×10−18 J[1] = 27.211386245981(30) eV.[2] The name "hartree" was suggested for this unit of energy.[3][4]

The hartree is approximately the negative electric potential energy of the electron in a hydrogen atom in its ground state and, by the virial theorem, approximately twice its ionization energy; the relationships are not exact because of the finite mass of the nucleus of the hydrogen atom and relativistic corrections.

The hartree is usually used as a unit of energy in atomic physics and computational chemistry: for experimental measurements at the atomic scale, the electronvolt (eV) or the reciprocal centimetre (cm−1) are much more widely used.

Other relationships

edit
 
= 2 Ry = 2 Rhc
= 27.211386245981(30) eV[2]
= 4.3597447222060(48)×10−18 J[1]
= 4.3597447222060(48)×10−11 erg
2625.4996394799(50) kJ/mol
627.5094740631(12) kcal/mol
219474.63136320(43) cm−1
6579.683920502(13) THz

where:

Effective hartree units are used in semiconductor physics where   is replaced by   and   is the static dielectric constant. Also, the electron mass is replaced by the effective band mass  . The effective hartree in semiconductors becomes small enough to be measured in millielectronvolts (meV).[5]

References

edit
  1. ^ a b "2022 CODATA Value: Hartree energy". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  2. ^ a b "2022 CODATA Value: Hartree energy in eV". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  3. ^ Shull, H.; Hall, G.G. (1959). "Atomic Units". Nature. 184 (4698). Nature Publishing Group: 1559–1560. Bibcode:1959Natur.184.1559S. doi:10.1038/1841559a0.
  4. ^ McWeeny, R. (May 1973). "Natural Units in Atomic and Molecular Physics". Nature. 243 (5404): 196–198. Bibcode:1973Natur.243..196M. doi:10.1038/243196a0. ISSN 0028-0836. S2CID 4164851.
  5. ^ Tsuneya Ando, Alan B. Fowler, and Frank Stern Rev. Mod. Phys. 54, 437 (1982)