Examine individual changes
This page allows you to examine the variables generated by the Edit Filter for an individual change.
Variables generated for this change
Variable | Value |
---|---|
Name of the user account (user_name ) | '115.147.34.25' |
Page ID (page_id ) | 234969 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'List of integrals of inverse trigonometric functions' |
Full page title (page_prefixedtitle ) | 'List of integrals of inverse trigonometric functions' |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | '/* Arccosine */ ' |
Whether or not the edit is marked as minor (no longer in use) (minor_edit ) | false |
Old page wikitext, before the edit (old_wikitext ) | '{{Trigonometry}}
The following is a list of [[integral]]s ([[antiderivative]] formulas) for integrands that contain inverse [[trigonometric function]]s (also known as "arc functions"). For a complete list of integral formulas, see [[lists of integrals]].
''C'' is used for the arbitrary [[constant of integration]] that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives.
Note: There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as ''sin<sup>−1</sup>'', ''asin'', or, as is used on this page, ''arcsin''.
==Arcsine==
:<math>\int \arcsin x \,dx = x\arcsin x+ \sqrt{1-x^2} + C</math>
:<math>\int \arcsin \frac{x}{a} \ dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C</math>
:<math>\int x \arcsin \frac{x}{a} \ dx = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{a^2 - x^2} + C</math>
:<math>\int x^2 \arcsin \frac{x}{a} \ dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{x^2 + 2a^2}{9} \sqrt{a^2 - x^2} + C</math>
:<math>\int x^n \arcsin x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ dx \right)</math>
:<math>\int \cos^n x \arcsin x \ dx = \left( x^{n^2 + 1} \arccos x + \frac{x^n \sqrt{1 - x^4} - n x^{n^2 - 1} \arccos x}{n^2 - 1} + n \int x^{n^2 - 2} \arccos x \ dx \right)</math>
==Arccosine==
:<math>\int \arccos x \,dx = x\arccos x- \sqrt{1-x^2} + C</math>
:<math>\int \arccos \frac{x}{a} \ dx = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C</math>
:<math>\int x \arccos \frac{x}{a} \ dx = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C</math>
:<math>\int x^2 \arccos \frac{x}{a} \ dx = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{x^2 + 2a^2}{9} \sqrt{a^2 - x^2} + C</math>
==Arctangent==
:<math>\int \arctan x \,dx = x\arctan x- \frac{1}{2}\ln(1+x^2) + C</math>
:<math>\int \arctan\big( \frac{x}{a}\big) dx = x \arctan \big( \frac{x}{a} \big) - \frac{a}{2} \ln(1 + \frac{x^2}{a^2}) + C</math>
:<math>\int x \arctan\big( \frac{x}{a}\big) dx = \frac{ (a^2 + x^2) \arctan \big( \frac{x}{a} \big) - a x}{2} + C</math>
:<math>\int x^2 \arctan\big( \frac{x}{a}\big) dx = \frac{x^3}{3} \arctan \big(\frac{x}{a}\big) - \frac{a x^2}{6} + \frac{a^3}{6} \ln({a^2 + x^2}) + C</math>
:<math>\int x^n \arctan \big( \frac{x}{a}\big) dx = \frac{x^{n + 1}}{n + 1} \arctan \big( \frac{x}{a} \big) - \frac{a}{n + 1} \int \frac{x^{n + 1}}{a^2 + x^2} \ dx, \quad n \neq -1</math>
==Arccosecant==
:<math>\int \arccsc x \,dx = x\arccsc x+ \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right| + C</math>
:<math>\int \arccsc \frac{x}{a} \ dx = x \arccsc \frac{x}{a} + {a} \ln{(\frac{x}{a}(\sqrt{1-\frac{a^2}{x^2}} + 1))} + C</math>
:<math>\int x \arccsc \frac{x}{a} \ dx = \frac{x^2}{2} \arccsc \frac{x}{a} + \frac{ax}{2} \sqrt{1-\frac{a^2}{x^2}} + C</math>
==Arcsecant==
:<math>\int \arcsec x \,dx = x\arcsec x- \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right| + C</math>
:<math>\int \arcsec \frac{x}{a} \ dx = x \arcsec \frac{x}{a} + \frac{x}{a |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right| + C</math>
:<math>\int x \arcsec x \ dx = \frac{1}{2} \left( x^2 \arcsec x - \sqrt{x^2 - 1} \right) + C</math>
:<math>\int x^n \arcsec x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsec x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + [1 - n] \left( x^{n - 1} \arcsec x + (1 - n) \int x^{n - 2} \arcsec x \ dx \right) \right] \right)</math>
==Arccotangent==
:<math>\int \arccot x \,dx = x\arccot x+ \frac{1}{2} \ln(1+x^2) + C</math>
:<math>\int \arccot \frac{x}{a} \ dx = x \arccot \frac{x}{a} + \frac{a}{2} \ln(a^2 + x^2) + C</math>
:<math>\int x \arccot \frac{x}{a} \ dx = \frac{a^2 + x^2}{2} \arccot \frac{x}{a} + \frac{a x}{2} + C</math>
:<math>\int x^2 \arccot \frac{x}{a} \ dx = \frac{x^3}{3} \arccot \frac{x}{a} + \frac{a x^2}{6} - \frac{a^3}{6} \ln(a^2 + x^2) + C</math>
:<math>\int x^n \arccot \frac{x}{a} \ dx = \frac{x^{n + 1}}{n+1} \arccot \frac{x}{a} + \frac{a}{n + 1} \int \frac{x^{n + 1}}{a^2 + x^2} \ dx, \quad n \neq -1</math>
{{Lists of integrals}}
[[Category:Integrals|Arc functions]]
[[Category:Mathematics-related lists|Integrals of arc functions]]
[[bs:Spisak integrala inverznih trigonometrijskih funkcija]]
[[ca:Llista d'integrals d'inverses de funcions trigonomètriques]]
[[cs:Seznam integrálů inverzních trigonometrických funkcí]]
[[es:Anexo:Integrales de funciones inversas trigonométricas]]
[[fr:Primitives de fonctions circulaires réciproques]]
[[gl:Lista de integrais de funcións trigonométricas inversas]]
[[hr:Popis integrala arc funkcija]]
[[it:Tavola degli integrali indefiniti di funzioni d'arco]]
[[km:តារាងអាំងតេក្រាលនៃអនុគមន៍ច្រាស់ត្រីកោណមាត្រ]]
[[ru:Список интегралов от обратных тригонометрических функций]]
[[sh:Popis integrala arc funkcija]]
[[vi:Danh sách tích phân với hàm lượng giác ngược]]
[[zh:反三角函数积分表]]' |
New page wikitext, after the edit (new_wikitext ) | '{{Trigonometry}}
The following is a list of [[integral]]s ([[antiderivative]] formulas) for integrands that contain inverse [[trigonometric function]]s (also known as "arc functions"). For a complete list of integral formulas, see [[lists of integrals]].
''C'' is used for the arbitrary [[constant of integration]] that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives.
Note: There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as ''sin<sup>−1</sup>'', ''asin'', or, as is used on this page, ''arcsin''.
==Arcsine==
:<math>\int \arcsin x \,dx = x\arcsin x+ \sqrt{1-x^2} + C</math>
:<math>\int \arcsin \frac{x}{a} \ dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C</math>
:<math>\int x \arcsin \frac{x}{a} \ dx = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{a^2 - x^2} + C</math>
:<math>\int x^2 \arcsin \frac{x}{a} \ dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{x^2 + 2a^2}{9} \sqrt{a^2 - x^2} + C</math>
:<math>\int x^n \arcsin x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ dx \right)</math>
:<math>\int \cos^n x \arcsin x \ dx = \left( x^{n^2 + 1} \arccos x + \frac{x^n \sqrt{1 - x^4} - n x^{n^2 - 1} \arccos x}{n^2 - 1} + n \int x^{n^2 - 2} \arccos x \ dx \right)</math>
==Arccosine==
:<math>\int \arccos x \,dx = x\arccos x- \sqrt{1-x^2} + C</math>
:<math>\int \arccos \frac{x}{a} \ dx = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C</math>
:<math>\int x \arccos \frac{x}{a} \ dx = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C</math>
:<math>\int x^2 \arccos \frac{x}{a} \ dx = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{x^2 + 2a^2}{9} \sqrt{a^2 - x^2} + C</math>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
==Arctangent==
:<math>\int \arctan x \,dx = x\arctan x- \frac{1}{2}\ln(1+x^2) + C</math>
:<math>\int \arctan\big( \frac{x}{a}\big) dx = x \arctan \big( \frac{x}{a} \big) - \frac{a}{2} \ln(1 + \frac{x^2}{a^2}) + C</math>
:<math>\int x \arctan\big( \frac{x}{a}\big) dx = \frac{ (a^2 + x^2) \arctan \big( \frac{x}{a} \big) - a x}{2} + C</math>
:<math>\int x^2 \arctan\big( \frac{x}{a}\big) dx = \frac{x^3}{3} \arctan \big(\frac{x}{a}\big) - \frac{a x^2}{6} + \frac{a^3}{6} \ln({a^2 + x^2}) + C</math>
:<math>\int x^n \arctan \big( \frac{x}{a}\big) dx = \frac{x^{n + 1}}{n + 1} \arctan \big( \frac{x}{a} \big) - \frac{a}{n + 1} \int \frac{x^{n + 1}}{a^2 + x^2} \ dx, \quad n \neq -1</math>
==Arccosecant==
:<math>\int \arccsc x \,dx = x\arccsc x+ \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right| + C</math>
:<math>\int \arccsc \frac{x}{a} \ dx = x \arccsc \frac{x}{a} + {a} \ln{(\frac{x}{a}(\sqrt{1-\frac{a^2}{x^2}} + 1))} + C</math>
:<math>\int x \arccsc \frac{x}{a} \ dx = \frac{x^2}{2} \arccsc \frac{x}{a} + \frac{ax}{2} \sqrt{1-\frac{a^2}{x^2}} + C</math>
==Arcsecant==
:<math>\int \arcsec x \,dx = x\arcsec x- \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right| + C</math>
:<math>\int \arcsec \frac{x}{a} \ dx = x \arcsec \frac{x}{a} + \frac{x}{a |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right| + C</math>
:<math>\int x \arcsec x \ dx = \frac{1}{2} \left( x^2 \arcsec x - \sqrt{x^2 - 1} \right) + C</math>
:<math>\int x^n \arcsec x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsec x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + [1 - n] \left( x^{n - 1} \arcsec x + (1 - n) \int x^{n - 2} \arcsec x \ dx \right) \right] \right)</math>
==Arccotangent==
:<math>\int \arccot x \,dx = x\arccot x+ \frac{1}{2} \ln(1+x^2) + C</math>
:<math>\int \arccot \frac{x}{a} \ dx = x \arccot \frac{x}{a} + \frac{a}{2} \ln(a^2 + x^2) + C</math>
:<math>\int x \arccot \frac{x}{a} \ dx = \frac{a^2 + x^2}{2} \arccot \frac{x}{a} + \frac{a x}{2} + C</math>
:<math>\int x^2 \arccot \frac{x}{a} \ dx = \frac{x^3}{3} \arccot \frac{x}{a} + \frac{a x^2}{6} - \frac{a^3}{6} \ln(a^2 + x^2) + C</math>
:<math>\int x^n \arccot \frac{x}{a} \ dx = \frac{x^{n + 1}}{n+1} \arccot \frac{x}{a} + \frac{a}{n + 1} \int \frac{x^{n + 1}}{a^2 + x^2} \ dx, \quad n \neq -1</math>
{{Lists of integrals}}
[[Category:Integrals|Arc functions]]
[[Category:Mathematics-related lists|Integrals of arc functions]]
[[bs:Spisak integrala inverznih trigonometrijskih funkcija]]
[[ca:Llista d'integrals d'inverses de funcions trigonomètriques]]
[[cs:Seznam integrálů inverzních trigonometrických funkcí]]
[[es:Anexo:Integrales de funciones inversas trigonométricas]]
[[fr:Primitives de fonctions circulaires réciproques]]
[[gl:Lista de integrais de funcións trigonométricas inversas]]
[[hr:Popis integrala arc funkcija]]
[[it:Tavola degli integrali indefiniti di funzioni d'arco]]
[[km:តារាងអាំងតេក្រាលនៃអនុគមន៍ច្រាស់ត្រីកោណមាត្រ]]
[[ru:Список интегралов от обратных тригонометрических функций]]
[[sh:Popis integrala arc funkcija]]
[[vi:Danh sách tích phân với hàm lượng giác ngược]]
[[zh:反三角函数积分表]]' |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | 0 |
Unix timestamp of change (timestamp ) | 1260166469 |