This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Name of the user account (user_name)
'115.147.34.25'
Page ID (page_id)
234969
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'List of integrals of inverse trigonometric functions'
Full page title (page_prefixedtitle)
'List of integrals of inverse trigonometric functions'
Action (action)
'edit'
Edit summary/reason (summary)
'/* Arccosine */ '
Whether or not the edit is marked as minor (no longer in use) (minor_edit)
false
Old page wikitext, before the edit (old_wikitext)
'{{Trigonometry}} The following is a list of [[integral]]s ([[antiderivative]] formulas) for integrands that contain inverse [[trigonometric function]]s (also known as "arc functions"). For a complete list of integral formulas, see [[lists of integrals]]. ''C'' is used for the arbitrary [[constant of integration]] that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives. Note: There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as ''sin<sup>&minus;1</sup>'', ''asin'', or, as is used on this page, ''arcsin''. ==Arcsine== :<math>\int \arcsin x \,dx = x\arcsin x+ \sqrt{1-x^2} + C</math> :<math>\int \arcsin \frac{x}{a} \ dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C</math> :<math>\int x \arcsin \frac{x}{a} \ dx = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{a^2 - x^2} + C</math> :<math>\int x^2 \arcsin \frac{x}{a} \ dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{x^2 + 2a^2}{9} \sqrt{a^2 - x^2} + C</math> :<math>\int x^n \arcsin x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ dx \right)</math> :<math>\int \cos^n x \arcsin x \ dx = \left( x^{n^2 + 1} \arccos x + \frac{x^n \sqrt{1 - x^4} - n x^{n^2 - 1} \arccos x}{n^2 - 1} + n \int x^{n^2 - 2} \arccos x \ dx \right)</math> ==Arccosine== :<math>\int \arccos x \,dx = x\arccos x- \sqrt{1-x^2} + C</math> :<math>\int \arccos \frac{x}{a} \ dx = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C</math> :<math>\int x \arccos \frac{x}{a} \ dx = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C</math> :<math>\int x^2 \arccos \frac{x}{a} \ dx = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{x^2 + 2a^2}{9} \sqrt{a^2 - x^2} + C</math> ==Arctangent== :<math>\int \arctan x \,dx = x\arctan x- \frac{1}{2}\ln(1+x^2) + C</math> :<math>\int \arctan\big( \frac{x}{a}\big) dx = x \arctan \big( \frac{x}{a} \big) - \frac{a}{2} \ln(1 + \frac{x^2}{a^2}) + C</math> :<math>\int x \arctan\big( \frac{x}{a}\big) dx = \frac{ (a^2 + x^2) \arctan \big( \frac{x}{a} \big) - a x}{2} + C</math> :<math>\int x^2 \arctan\big( \frac{x}{a}\big) dx = \frac{x^3}{3} \arctan \big(\frac{x}{a}\big) - \frac{a x^2}{6} + \frac{a^3}{6} \ln({a^2 + x^2}) + C</math> :<math>\int x^n \arctan \big( \frac{x}{a}\big) dx = \frac{x^{n + 1}}{n + 1} \arctan \big( \frac{x}{a} \big) - \frac{a}{n + 1} \int \frac{x^{n + 1}}{a^2 + x^2} \ dx, \quad n \neq -1</math> ==Arccosecant== :<math>\int \arccsc x \,dx = x\arccsc x+ \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right| + C</math> :<math>\int \arccsc \frac{x}{a} \ dx = x \arccsc \frac{x}{a} + {a} \ln{(\frac{x}{a}(\sqrt{1-\frac{a^2}{x^2}} + 1))} + C</math> :<math>\int x \arccsc \frac{x}{a} \ dx = \frac{x^2}{2} \arccsc \frac{x}{a} + \frac{ax}{2} \sqrt{1-\frac{a^2}{x^2}} + C</math> ==Arcsecant== :<math>\int \arcsec x \,dx = x\arcsec x- \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right| + C</math> :<math>\int \arcsec \frac{x}{a} \ dx = x \arcsec \frac{x}{a} + \frac{x}{a |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right| + C</math> :<math>\int x \arcsec x \ dx = \frac{1}{2} \left( x^2 \arcsec x - \sqrt{x^2 - 1} \right) + C</math> :<math>\int x^n \arcsec x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsec x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + [1 - n] \left( x^{n - 1} \arcsec x + (1 - n) \int x^{n - 2} \arcsec x \ dx \right) \right] \right)</math> ==Arccotangent== :<math>\int \arccot x \,dx = x\arccot x+ \frac{1}{2} \ln(1+x^2) + C</math> :<math>\int \arccot \frac{x}{a} \ dx = x \arccot \frac{x}{a} + \frac{a}{2} \ln(a^2 + x^2) + C</math> :<math>\int x \arccot \frac{x}{a} \ dx = \frac{a^2 + x^2}{2} \arccot \frac{x}{a} + \frac{a x}{2} + C</math> :<math>\int x^2 \arccot \frac{x}{a} \ dx = \frac{x^3}{3} \arccot \frac{x}{a} + \frac{a x^2}{6} - \frac{a^3}{6} \ln(a^2 + x^2) + C</math> :<math>\int x^n \arccot \frac{x}{a} \ dx = \frac{x^{n + 1}}{n+1} \arccot \frac{x}{a} + \frac{a}{n + 1} \int \frac{x^{n + 1}}{a^2 + x^2} \ dx, \quad n \neq -1</math> {{Lists of integrals}} [[Category:Integrals|Arc functions]] [[Category:Mathematics-related lists|Integrals of arc functions]] [[bs:Spisak integrala inverznih trigonometrijskih funkcija]] [[ca:Llista d'integrals d'inverses de funcions trigonomètriques]] [[cs:Seznam integrálů inverzních trigonometrických funkcí]] [[es:Anexo:Integrales de funciones inversas trigonométricas]] [[fr:Primitives de fonctions circulaires réciproques]] [[gl:Lista de integrais de funcións trigonométricas inversas]] [[hr:Popis integrala arc funkcija]] [[it:Tavola degli integrali indefiniti di funzioni d'arco]] [[km:តារាងអាំងតេក្រាលនៃអនុគមន៍ច្រាស់ត្រីកោណមាត្រ]] [[ru:Список интегралов от обратных тригонометрических функций]] [[sh:Popis integrala arc funkcija]] [[vi:Danh sách tích phân với hàm lượng giác ngược]] [[zh:反三角函数积分表]]'
New page wikitext, after the edit (new_wikitext)
'{{Trigonometry}} The following is a list of [[integral]]s ([[antiderivative]] formulas) for integrands that contain inverse [[trigonometric function]]s (also known as "arc functions"). For a complete list of integral formulas, see [[lists of integrals]]. ''C'' is used for the arbitrary [[constant of integration]] that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives. Note: There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as ''sin<sup>&minus;1</sup>'', ''asin'', or, as is used on this page, ''arcsin''. ==Arcsine== :<math>\int \arcsin x \,dx = x\arcsin x+ \sqrt{1-x^2} + C</math> :<math>\int \arcsin \frac{x}{a} \ dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C</math> :<math>\int x \arcsin \frac{x}{a} \ dx = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{a^2 - x^2} + C</math> :<math>\int x^2 \arcsin \frac{x}{a} \ dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{x^2 + 2a^2}{9} \sqrt{a^2 - x^2} + C</math> :<math>\int x^n \arcsin x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ dx \right)</math> :<math>\int \cos^n x \arcsin x \ dx = \left( x^{n^2 + 1} \arccos x + \frac{x^n \sqrt{1 - x^4} - n x^{n^2 - 1} \arccos x}{n^2 - 1} + n \int x^{n^2 - 2} \arccos x \ dx \right)</math> ==Arccosine== :<math>\int \arccos x \,dx = x\arccos x- \sqrt{1-x^2} + C</math> :<math>\int \arccos \frac{x}{a} \ dx = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C</math> :<math>\int x \arccos \frac{x}{a} \ dx = \left( \frac{x^2}{2} - \frac{a^2}{4} \right) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C</math> :<math>\int x^2 \arccos \frac{x}{a} \ dx = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{x^2 + 2a^2}{9} \sqrt{a^2 - x^2} + C</math>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ==Arctangent== :<math>\int \arctan x \,dx = x\arctan x- \frac{1}{2}\ln(1+x^2) + C</math> :<math>\int \arctan\big( \frac{x}{a}\big) dx = x \arctan \big( \frac{x}{a} \big) - \frac{a}{2} \ln(1 + \frac{x^2}{a^2}) + C</math> :<math>\int x \arctan\big( \frac{x}{a}\big) dx = \frac{ (a^2 + x^2) \arctan \big( \frac{x}{a} \big) - a x}{2} + C</math> :<math>\int x^2 \arctan\big( \frac{x}{a}\big) dx = \frac{x^3}{3} \arctan \big(\frac{x}{a}\big) - \frac{a x^2}{6} + \frac{a^3}{6} \ln({a^2 + x^2}) + C</math> :<math>\int x^n \arctan \big( \frac{x}{a}\big) dx = \frac{x^{n + 1}}{n + 1} \arctan \big( \frac{x}{a} \big) - \frac{a}{n + 1} \int \frac{x^{n + 1}}{a^2 + x^2} \ dx, \quad n \neq -1</math> ==Arccosecant== :<math>\int \arccsc x \,dx = x\arccsc x+ \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right| + C</math> :<math>\int \arccsc \frac{x}{a} \ dx = x \arccsc \frac{x}{a} + {a} \ln{(\frac{x}{a}(\sqrt{1-\frac{a^2}{x^2}} + 1))} + C</math> :<math>\int x \arccsc \frac{x}{a} \ dx = \frac{x^2}{2} \arccsc \frac{x}{a} + \frac{ax}{2} \sqrt{1-\frac{a^2}{x^2}} + C</math> ==Arcsecant== :<math>\int \arcsec x \,dx = x\arcsec x- \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right| + C</math> :<math>\int \arcsec \frac{x}{a} \ dx = x \arcsec \frac{x}{a} + \frac{x}{a |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right| + C</math> :<math>\int x \arcsec x \ dx = \frac{1}{2} \left( x^2 \arcsec x - \sqrt{x^2 - 1} \right) + C</math> :<math>\int x^n \arcsec x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsec x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + [1 - n] \left( x^{n - 1} \arcsec x + (1 - n) \int x^{n - 2} \arcsec x \ dx \right) \right] \right)</math> ==Arccotangent== :<math>\int \arccot x \,dx = x\arccot x+ \frac{1}{2} \ln(1+x^2) + C</math> :<math>\int \arccot \frac{x}{a} \ dx = x \arccot \frac{x}{a} + \frac{a}{2} \ln(a^2 + x^2) + C</math> :<math>\int x \arccot \frac{x}{a} \ dx = \frac{a^2 + x^2}{2} \arccot \frac{x}{a} + \frac{a x}{2} + C</math> :<math>\int x^2 \arccot \frac{x}{a} \ dx = \frac{x^3}{3} \arccot \frac{x}{a} + \frac{a x^2}{6} - \frac{a^3}{6} \ln(a^2 + x^2) + C</math> :<math>\int x^n \arccot \frac{x}{a} \ dx = \frac{x^{n + 1}}{n+1} \arccot \frac{x}{a} + \frac{a}{n + 1} \int \frac{x^{n + 1}}{a^2 + x^2} \ dx, \quad n \neq -1</math> {{Lists of integrals}} [[Category:Integrals|Arc functions]] [[Category:Mathematics-related lists|Integrals of arc functions]] [[bs:Spisak integrala inverznih trigonometrijskih funkcija]] [[ca:Llista d'integrals d'inverses de funcions trigonomètriques]] [[cs:Seznam integrálů inverzních trigonometrických funkcí]] [[es:Anexo:Integrales de funciones inversas trigonométricas]] [[fr:Primitives de fonctions circulaires réciproques]] [[gl:Lista de integrais de funcións trigonométricas inversas]] [[hr:Popis integrala arc funkcija]] [[it:Tavola degli integrali indefiniti di funzioni d'arco]] [[km:តារាងអាំងតេក្រាលនៃអនុគមន៍ច្រាស់ត្រីកោណមាត្រ]] [[ru:Список интегралов от обратных тригонометрических функций]] [[sh:Popis integrala arc funkcija]] [[vi:Danh sách tích phân với hàm lượng giác ngược]] [[zh:反三角函数积分表]]'
Whether or not the change was made through a Tor exit node (tor_exit_node)
0
Unix timestamp of change (timestamp)
1260166469