Examine individual changes
This page allows you to examine the variables generated by the Edit Filter for an individual change.
Variables generated for this change
Variable | Value |
---|---|
Name of the user account (user_name ) | '70.33.245.11' |
Page ID (page_id ) | 219202 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'Binary code' |
Full page title (page_prefixedtitle ) | 'Binary code' |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | 'this glorious spam will always be in the history ;)' |
Whether or not the edit is marked as minor (no longer in use) (minor_edit ) | false |
Old page wikitext, before the edit (old_wikitext ) | '[[Image:Wikipedia in binary.gif|thumb|The word 'Wikipedia' represented in [[ASCII]] binary.]]
'''Binary code''' is the system of representing [[text]] or [[Instruction (computer science)|computer processor instructions]] by the use of the [[binary number system]]'s two-[[binary digit]]s "0" and "1". A [[String (computing)|binary string]] of eight digits ([[bit]]s), for example, can represent any of 256 possible values and can correspond to a variety of different symbols, letters or instructions. In 8-bit [[ASCII]] code the lowercase a is represented by the bit string 01100001.
In computing and telecommunication, binary code is used for any of a variety of methods of [[encoding]] data, such as [[character string]]s, into [[bit string]]s. Those methods may be fixed-width or [[variable-length code|variable-width]].
In a fixed-width binary code, each letter, digit, or other character, is represented by a bit string of the same length; that bit string, interpreted as a [[binary number]], is usually displayed in code tables in [[octal]], [[decimal]] or [[hexadecimal]] notation.
There are many [[character sets]] and many [[character encoding]]s for them.
A bit string, interpreted as a binary number, can be [[Binary numeral system#Decimal| translated into a decimal number]].
==Early uses of Binary codes==
Anton Glaser, in {{cite book |title=History of Binary and other Nondecimal Numeration |publisher=Tomash|date =1971|isbn = 0-938228-005 }}, Chapter VII ''Applications to Computers'', cites the following Pre-ENIAC milestones.
* 1932: [[Charles Wynn-Williams|C.E. Wynn-Williams]] "Scale of Two" counter
* 1938: [[Atanasoff-Berry Computer]]
* 1939: Stibitz: "excess three" code in the [[George Stibitz#Computer|Complex Computer]]
==Weight of binary codes==
The weight of a binary code, as defined in [http://www.research.att.com/~njas/codes/Andw/], is the [[Hamming weight]] of the binary words coding for the represented words or sequences.
==See also==
* [[Binary file]]
* [[Hexadecimal]]
* [[List of binary codes]]
* [[Octal]]
* [[Unicode]]
[[Category:Encodings]]
[[Category:Computer data]]
{{comp-sci-stub}}
[[bg:Двоичен код]]
[[cs:Binární kódování]]
[[de:Binärcode]]
[[es:Código binario]]
[[eo:Duuma kodo]]
[[hi:द्वयाधारी कूट]]
[[lb:Binärcode]]
[[mk:Бинарен код]]
[[no:Binær kode]]
[[nn:Binær kode]]
[[uk:Бінарний код]]' |
New page wikitext, after the edit (new_wikitext ) | '01000010011010010110111001100001011100100111100100100000011000110110111101100100011001010010000001101001011100110010000001110100011010000110010100100000011100110111100101110011011101000110010101101101001000000110111101100110001000000111001001100101011100000111001001100101011100110110010101101110011101000110100101101110011001110010000001110100011001010111100001110100001000000110111101110010001000000110001101101111011011010111000001110101011101000110010101110010001000000111000001110010011011110110001101100101011100110111001101101111011100100010000001101001011011100111001101110100011100100111010101100011011101000110100101101111011011100111001100100000011000100111100100100000011101000110100001100101001000000111010101110011011001010010000001101111011001100010000001110100011010000110010100100000011000100110100101101110011000010111001001111001001000000110111001110101011011010110001001100101011100100010000001110011011110010111001101110100011001010110110100100111011100110010000001110100011101110110111100101101011000100110100101101110011000010111001001111001001000000110010001101001011001110110100101110100011100110010000000100010001100000010001000100000011000010110111001100100001000000010001000110001001000100010111000100000010000010010000001100010011010010110111001100001011100100111100100100000011100110111010001110010011010010110111001100111001000000110111101100110001000000110010101101001011001110110100001110100001000000110010001101001011001110110100101110100011100110010000000101000011000100110100101110100011100110010100100101100001000000110011001101111011100100010000001100101011110000110000101101101011100000110110001100101001011000010000001100011011000010110111000100000011100100110010101110000011100100110010101110011011001010110111001110100001000000110000101101110011110010010000001101111011001100010000000110010001101010011011000100000011100000110111101110011011100110110100101100010011011000110010100100000011101100110000101101100011101010110010101110011001000000110000101101110011001000010000001100011011000010110111000100000011000110110111101110010011100100110010101110011011100000110111101101110011001000010000001110100011011110010000001100001001000000111011001100001011100100110100101100101011101000111100100100000011011110110011000100000011001000110100101100110011001100110010101110010011001010110111001110100001000000111001101111001011011010110001001101111011011000111001100101100001000000110110001100101011101000111010001100101011100100111001100100000011011110111001000100000011010010110111001110011011101000111001001110101011000110111010001101001011011110110111001110011001011100010000001001001011011100010000000111000001011010110001001101001011101000010000001000001010100110100001101001001010010010010000001100011011011110110010001100101001000000111010001101000011001010010000001101100011011110111011101100101011100100110001101100001011100110110010100100000011000010010000001101001011100110010000001110010011001010111000001110010011001010111001101100101011011100111010001100101011001000010000001100010011110010010000001110100011010000110010100100000011000100110100101110100001000000111001101110100011100100110100101101110011001110010000000110000001100010011000100110000001100000011000000110000001100010010111000001101000010100000110100001010010010010110111000100000011000110110111101101101011100000111010101110100011010010110111001100111001000000110000101101110011001000010000001110100011001010110110001100101011000110110111101101101011011010111010101101110011010010110001101100001011101000110100101101111011011100010110000100000011000100110100101101110011000010111001001111001001000000110001101101111011001000110010100100000011010010111001100100000011101010111001101100101011001000010000001100110011011110111001000100000011000010110111001111001001000000110111101100110001000000110000100100000011101100110000101110010011010010110010101110100011110010010000001101111011001100010000001101101011001010111010001101000011011110110010001110011001000000110111101100110001000000110010101101110011000110110111101100100011010010110111001100111001000000110010001100001011101000110000100101100001000000111001101110101011000110110100000100000011000010111001100100000011000110110100001100001011100100110000101100011011101000110010101110010001000000111001101110100011100100110100101101110011001110111001100101100001000000110100101101110011101000110111100100000011000100110100101110100001000000111001101110100011100100110100101101110011001110111001100101110001000000101010001101000011011110111001101100101001000000110110101100101011101000110100001101111011001000111001100100000011011010110000101111001001000000110001001100101001000000110011001101001011110000110010101100100001011010111011101101001011001000111010001101000001000000110111101110010001000000111011001100001011100100110100101100001011000100110110001100101001011010111011101101001011001000111010001101000001011100000110100001010000011010000101001001001011011100010000001100001001000000110011001101001011110000110010101100100001011010111011101101001011001000111010001101000001000000110001001101001011011100110000101110010011110010010000001100011011011110110010001100101001011000010000001100101011000010110001101101000001000000110110001100101011101000111010001100101011100100010110000100000011001000110100101100111011010010111010000101100001000000110111101110010001000000110111101110100011010000110010101110010001000000110001101101000011000010111001001100001011000110111010001100101011100100010110000100000011010010111001100100000011100100110010101110000011100100110010101110011011001010110111001110100011001010110010000100000011000100111100100100000011000010010000001100010011010010111010000100000011100110111010001110010011010010110111001100111001000000110111101100110001000000111010001101000011001010010000001110011011000010110110101100101001000000110110001100101011011100110011101110100011010000011101100100000011101000110100001100001011101000010000001100010011010010111010000100000011100110111010001110010011010010110111001100111001011000010000001101001011011100111010001100101011100100111000001110010011001010111010001100101011001000010000001100001011100110010000001100001001000000110001001101001011011100110000101110010011110010010000001101110011101010110110101100010011001010111001000101100001000000110100101110011001000000111010101110011011101010110000101101100011011000111100100100000011001000110100101110011011100000110110001100001011110010110010101100100001000000110100101101110001000000110001101101111011001000110010100100000011101000110000101100010011011000110010101110011001000000110100101101110001000000110111101100011011101000110000101101100001011000010000001100100011001010110001101101001011011010110000101101100001000000110111101110010001000000110100001100101011110000110000101100100011001010110001101101001011011010110000101101100001000000110111001101111011101000110000101110100011010010110111101101110001011100000110100001010000011010000101001010100011010000110010101110010011001010010000001100001011100100110010100100000011011010110000101101110011110010010000001100011011010000110000101110010011000010110001101110100011001010111001000100000011100110110010101110100011100110010000001100001011011100110010000100000011011010110000101101110011110010010000001100011011010000110000101110010011000010110001101110100011001010111001000100000011001010110111001100011011011110110010001101001011011100110011101110011001000000110011001101111011100100010000001110100011010000110010101101101001011100000110100001010000011010000101001000001001000000110001001101001011101000010000001110011011101000111001001101001011011100110011100101100001000000110100101101110011101000110010101110010011100000111001001100101011101000110010101100100001000000110000101110011001000000110000100100000011000100110100101101110011000010111001001111001001000000110111001110101011011010110001001100101011100100010110000100000011000110110000101101110001000000110001001100101001000000111010001110010011000010110111001110011011011000110000101110100011001010110010000100000011010010110111001110100011011110010000001100001001000000110010001100101011000110110100101101101011000010110110000100000011011100111010101101101011000100110010101110010001011100000110100001010
==Early uses of Binary codes==
Anton Glaser, in {{cite book |title=History of Binary and other Nondecimal Numeration |publisher=Tomash|date =1971|isbn = 0-938228-005 }}, Chapter VII ''Applications to Computers'', cites the following Pre-ENIAC milestones.
* 1932: [[Charles Wynn-Williams|C.E. Wynn-Williams]] "Scale of Two" counter
* 1938: [[Atanasoff-Berry Computer]]
* 1939: Stibitz: "excess three" code in the [[George Stibitz#Computer|Complex Computer]]
==Weight of binary codes==
The weight of a binary code, as defined in [http://www.research.att.com/~njas/codes/Andw/], is the [[Hamming weight]] of the binary words coding for the represented words or sequences.
==See also==
* [[Binary file]]
* [[Hexadecimal]]
* [[List of binary codes]]
* [[Octal]]
* [[Unicode]]
[[Category:Encodings]]
[[Category:Computer data]]
{{comp-sci-stub}}
[[bg:Двоичен код]]
[[cs:Binární kódování]]
[[de:Binärcode]]
[[es:Código binario]]
[[eo:Duuma kodo]]
[[hi:द्वयाधारी कूट]]
[[lb:Binärcode]]
[[mk:Бинарен код]]
[[no:Binær kode]]
[[nn:Binær kode]]
[[uk:Бінарний код]]' |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | 0 |
Unix timestamp of change (timestamp ) | 1264986779 |