Universality class

(Redirected from Universality classes)

In statistical mechanics, a universality class is a set of mathematical models which share a scale-invariant limit under renormalization group flow. While the models within a class may differ at finite scales, their behavior become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents are the same for all models in the class.

Well-studied examples include the universality classes of the Ising model or the percolation theory at their respective phase transition points; these are both families of classes, one for each lattice dimension. Typically, a family of universality classes has a lower and upper critical dimension: below the lower critical dimension, the universality class becomes degenerate (this dimension is 2 for the Ising model, or for directed percolation, but 1 for undirected percolation), and above the upper critical dimension the critical exponents stabilize and can be calculated by an analog of mean-field theory (this dimension is 4 for Ising or for directed percolation, and 6 for undirected percolation).

Definition of critical exponents

edit

Critical exponents are defined in terms of the variation of certain physical properties of the system near its phase transition point. These physical properties will include its reduced temperature  , its order parameter measuring how much of the system is in the "ordered" phase, the specific heat, and so on.

  • The exponent   is the exponent relating the specific heat C to the reduced temperature: we have  . The specific heat will usually be singular at the critical point, but the minus sign in the definition of   allows it to remain positive.
  • The exponent   relates the order parameter   to the temperature. Unlike most critical exponents it is assumed positive, since the order parameter will usually be zero at the critical point. So we have  .
  • The exponent   relates the temperature with the system's response to an external driving force, or source field. We have  , with J the driving force.
  • The exponent   relates the order parameter to the source field at the critical temperature, where this relationship becomes nonlinear. We have   (hence  ), with the same meanings as before.
  • The exponent   relates the size of correlations (i.e. patches of the ordered phase) to the temperature; away from the critical point these are characterized by a correlation length  . We have  .
  • The exponent   measures the size of correlations at the critical temperature. It is defined so that the correlation function of the order parameter scales as  .
  • The exponent  , used in percolation theory, measures the size of the largest clusters (roughly, the largest ordered blocks) at 'temperatures' (connection probabilities) below the critical point. So  .
  • The exponent  , also from percolation theory, measures the number of size s clusters far from   (or the number of clusters at criticality):  , with the   factor removed at critical probability.

List of critical exponents

edit

For symmetries, the group listed gives the symmetry of the order parameter. The group   is the n-element symmetric group,   is the orthogonal group in n dimensions, and 1 is the trivial group. Mean-field theory result is indicated with (MF).

Class Dimension Symmetry            
3-state Potts 2   1/3 1/9 13/9 14 5/6 4/15
Ashkin–Teller (4-state Potts) 2   2/3 1/12 7/6 15 2/3 1/4
Ordinary percolation 1 1 1 0 1   1 1
2 1 2/3 5/36 43/18 91/5 4/3 5/24
3 1 −0.625(3) 0.4181(8) 1.793(3) 5.29(6) 0.87619(12) 0.46(8) or 0.59(9)
4 1 −0.756(40) 0.657(9) 1.422(16) 3.9 or 3.198(6) 0.689(10) −0.0944(28)
5 1 ≈ −0.85 0.830(10) 1.185(5) 3.0 0.569(5) −0.075(20) or −0.0565
6+ (MF) 1 −1 1 1 2 1/2 0
Directed percolation 1 1 0.159464(6) 0.276486(8) 2.277730(5) 0.159464(6) 1.096854(4) 0.313686(8)
2 1 0.451 0.536(3) 1.60 0.451 0.733(8) 0.230
3 1 0.73 0.813(9) 1.25 0.73 0.584(5) 0.12
4+ (MF) 1 1 1 1 1 1/2 0
Conserved directed percolation (Manna, or "local linear interface") 1 1 0.28(1) 0.14(1) 1.11(2)[1] 0.34(2)[1]
2 1 0.64(1) 1.59(3) 0.50(5) 1.29(8) 0.29(5)
3 1 0.84(2) 1.23(4) 0.90(3) 1.12(8) 0.16(5)
4+ (MF) 1 1 1 1 1 0
Protected percolation 2[2] 1 5/41 86/41
3[2] 1 0.28871(15) 1.3066(19)
Ising 2   0 1/8 7/4 15 1 1/4
3[3]   0.11008708(35) 0.32641871(75) 1.23707551(26) 4.78984254(27) 0.62997097(12) 0.036297612(48)
4+ (MF)   0 1/2 1 3 1/2 0
XY 2 Berezinskii-Kosterlitz-Thouless universality class
3[4]   −0.01526(30) 0.34869(7) 1.3179(2) 4.77937(25) 0.67175(10) 0.038176(44)
4+ (MF)   0 1/2 1 3 1/2 0
Heisenberg 3[5]   −0.1336⁢(15) 0.3689⁢(3) 1.3960⁢(9) 4.783⁢(3) 0.7112⁢(5) 0.0375⁢(5)
4+ (MF)   0 1/2 1 3 1/2 0
Self-avoiding walk 1 1 1 0 1   1 1
2 1 1/2 5/64 43/32 91/5 3/4 5/24
3 1 0.2372090(12) 0.3029190(8) 1.1569530(10)[6] 4.819348(15) 0.5875970(4)[7] 0.0310434(21)
4+ (MF) 1 0 1/2 1 3 1/2 0

Ising model

edit

This section lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and   symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.

d=2 d=3 d=4 general expression
α 0 0.11008708(35) 0  
β 1/8 0.32641871(75) 1/2  
γ 7/4 1.23707551(26) 1  
δ 15 4.78984254(27) 3  
η 1/4 0.036297612(48) 0  
ν 1 0.62997097(12) 1/2  
ω 2 0.82966(9) 0  

From the quantum field theory point of view, the critical exponents can be expressed in terms of scaling dimensions of the local operators   of the conformal field theory describing the phase transition[8] (In the Ginzburg–Landau description, these are the operators normally called  .) These expressions are given in the last column of the above table, and were used to calculate the values of the critical exponents using the operator dimensions values from the following table:

d=2 d=3 d=4
  1/8 0.518148806(24) [3] 1
  1 1.41262528(29) [3] 2
  4 3.82966(9) [9][10] 4

In d=2, the two-dimensional critical Ising model's critical exponents can be computed exactly using the minimal model  . In d=4, it is the free massless scalar theory (also referred to as mean field theory). These two theories are exactly solved, and the exact solutions give values reported in the table.

The d=3 theory is not yet exactly solved. The most accurate results come from the conformal bootstrap.[3][9][10][11][12][13][14] These are the values reported in the tables. Renormalization group methods,[15][16][17][18] Monte-Carlo simulations,[19] and the fuzzy sphere regulator[20] give results in agreement with the conformal bootstrap, but are several orders of magnitude less accurate.

Berezinskii-Kosterlitz-Thouless universality class

edit

The phase transition present in the two-dimensional XY model and superconductors is governed by a distinct universality class, the Berezinskii–Kosterlitz–Thouless transition[21]. The disordered phase (high-temperature phase) contains free vortices, while the ordered phase (low-temperature phase) contains bound vortices. At the phase transition, the free energy and all its derivatives are continuous, hence it is an infinite-order transition in the Ehrenfest classification.

The thermodynamic quantities do not show power-law singularities, as they do in second-order phase transitions. Instead, above the critical point  , the correlation length scales as  , where   is a constant and  . Susceptibility is then  , where   depends on the temperature (and  ). Specific heat is finite at  . The two-point correlation function scales as   for  , while it behaves as   for  .

Growth phenomena

edit

In epitaxial growth[22][23], there is a change in the roughness of surfaces, from atomically flat to rough. The root mean square fluctuation in the evolving surface height (which characterizes roughness) increases as   initially, and eventually saturates at a size-dependent value  .   is called the growth exponent, and   is the roughness exponent. The crossover time between the two regimes depends on the system size as  , where   is the dynamical exponent obeying the scaling law  .

class dimensionality      
Edwards-Wilkinson (EW)        
Kardar-Parisi-Zhang (KPZ)[24]        
       
       
Mullins-Herring (MH)        
Molecular-beam epitaxy (MBE)        

References

edit
  1. ^ a b Fajardo, Juan A. B. (2008). Universality in Self-Organized Criticality (PDF). Granada.{{cite book}}: CS1 maint: ___location missing publisher (link)
  2. ^ a b Fayfar, Sean; Bretaña, Alex; Montfrooij, Wouter (2021-01-15). "Protected percolation: a new universality class pertaining to heavily-doped quantum critical systems". Journal of Physics Communications. 5 (1): 015008. arXiv:2008.08258. Bibcode:2021JPhCo...5a5008F. doi:10.1088/2399-6528/abd8e9. ISSN 2399-6528.
  3. ^ a b c d Chang, Cyuan-Han; Dommes, Vasiliy; Erramilli, Rajeev; Homrich, Alexandre; Kravchuk, Petr; Liu, Aike; Mitchell, Matthew; Poland, David; Simmons-Duffin, David (2025). "Bootstrapping the 3d Ising stress tensor". Journal of High Energy Physics (3) 136. arXiv:2411.15300. Bibcode:2025JHEP...03..136C. doi:10.1007/JHEP03(2025)136.
  4. ^ Chester, Shai M.; Landry, Walter; Liu, Junyu; Poland, David; Simmons-Duffin, David; Su, Ning; Vichi, Alessandro (2020). "Carving out OPE space and precise O(2) model critical exponents". J. High Energy Phys. 2020 (6) 142: 1–52. arXiv:1912.03324. Bibcode:2020JHEP...06..142C. doi:10.1007/JHEP06(2020)142.
  5. ^ Campostrini, Massimo; Hasenbusch, Martin; Pelissetto, Andrea; Rossi, Paolo; Vicari, Ettore (2002). "Critical exponents and equation of state of the three-dimensional Heisenberg universality class". Phys. Rev. B. 65 (14): 144520. arXiv:cond-mat/0110336. Bibcode:2002PhRvB..65n4520C. doi:10.1103/PhysRevB.65.144520.
  6. ^ Clisby, Nathan (2017). "Scale-free Monte Carlo method for calculating the critical exponent γ of self-avoiding walks". J. Phys. A: Math. Theor. 50 (26): 264003. arXiv:1701.08415. Bibcode:2017JPhA...50z4003C. doi:10.1088/1751-8121/aa7231.
  7. ^ Clisby, Nathan; Dünweg, Burkhard (2016). "High-precision estimate of the hydrodynamic radius for self-avoiding walks". Phys. Rev. E. 94 (5): 052102. arXiv:2001.03138. Bibcode:2016PhRvE..94e2102C. doi:10.1103/PhysRevE.94.052102.
  8. ^ Cardy, John (1996). Scaling and Renormalization in Statistical Physics. Cambridge University Press. ISBN 978-0-521-49959-0.
  9. ^ a b Komargodski, Zohar; Simmons-Duffin, David (14 March 2016). "The Random-Bond Ising Model in 2.01 and 3 Dimensions". Journal of Physics A: Mathematical and Theoretical. 50 (15): 154001. arXiv:1603.04444. Bibcode:2017JPhA...50o4001K. doi:10.1088/1751-8121/aa6087. S2CID 34925106.
  10. ^ a b Reehorst, Marten (2022-09-21). "Rigorous bounds on irrelevant operators in the 3d Ising model CFT". Journal of High Energy Physics. 2022 (9) 177. arXiv:2111.12093. Bibcode:2022JHEP...09..177R. doi:10.1007/JHEP09(2022)177. ISSN 1029-8479. S2CID 244527272.
  11. ^ Kos, Filip; Poland, David; Simmons-Duffin, David; Vichi, Alessandro (14 March 2016). "Precision Islands in the Ising and O(N) Models". Journal of High Energy Physics. 2016 (8): 36. arXiv:1603.04436. Bibcode:2016JHEP...08..036K. doi:10.1007/JHEP08(2016)036. S2CID 119230765.
  12. ^ El-Showk, Sheer; Paulos, Miguel F.; Poland, David; Rychkov, Slava; Simmons-Duffin, David; Vichi, Alessandro (2014). "Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents". Journal of Statistical Physics. 157 (4–5): 869–914. arXiv:1403.4545. Bibcode:2014JSP...157..869E. doi:10.1007/s10955-014-1042-7. S2CID 39692193.
  13. ^ Simmons-Duffin, David (2015). "A semidefinite program solver for the conformal bootstrap". Journal of High Energy Physics. 2015 (6) 174. arXiv:1502.02033. Bibcode:2015JHEP...06..174S. doi:10.1007/JHEP06(2015)174. ISSN 1029-8479. S2CID 35625559.
  14. ^ Kadanoff, Leo P. (April 30, 2014). "Deep Understanding Achieved on the 3d Ising Model". Journal Club for Condensed Matter Physics. Archived from the original on July 22, 2015. Retrieved July 18, 2015.
  15. ^ Pelissetto, Andrea; Vicari, Ettore (2002). "Critical phenomena and renormalization-group theory". Physics Reports. 368 (6): 549–727. arXiv:cond-mat/0012164. Bibcode:2002PhR...368..549P. doi:10.1016/S0370-1573(02)00219-3. S2CID 119081563.
  16. ^ Kleinert, H., "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions". Archived 2020-03-12 at the Wayback Machine Physical Review D 60, 085001 (1999)
  17. ^ Balog, Ivan; Chate, Hugues; Delamotte, Bertrand; Marohnic, Maroje; Wschebor, Nicolas (2019). "Convergence of Non-Perturbative Approximations to the Renormalization Group". Phys. Rev. Lett. 123 (24): 240604. arXiv:1907.01829. Bibcode:2019PhRvL.123x0604B. doi:10.1103/PhysRevLett.123.240604. PMID 31922817.
  18. ^ De Polsi, Gonzalo; Balog, Ivan; Tissier, Matthieu; Wschebor, Nicolas (2020). "Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group". Phys. Rev. E. 101 (24): 042113. arXiv:1907.01829. Bibcode:2019PhRvL.123x0604B. doi:10.1103/PhysRevLett.123.240604. PMID 31922817.
  19. ^ Hasenbusch, Martin (2010). "Finite size scaling study of lattice models in the three-dimensional Ising universality class". Physical Review B. 82 (17) 174433. arXiv:1004.4486. Bibcode:2010PhRvB..82q4433H. doi:10.1103/PhysRevB.82.174433.
  20. ^ Zhu, Wei (2023). "Uncovering Conformal Symmetry in the 3D Ising Transition: State-Operator Correspondence from a Quantum Fuzzy Sphere Regularization". Physical Review X. 13 (2) 021009. arXiv:2210.13482. Bibcode:2023PhRvX..13b1009Z. doi:10.1103/PhysRevX.13.021009.
  21. ^ Henkel, Malte (1999). Conformal Invariance and Critical Phenomena. Springer. doi:10.1007/978-3-662-03937-3. ISBN 978-3-662-03937-3.
  22. ^ Barbási, A.-L.; Stanley, H.E. (1995). Fractal Concepts in Surface Growth. Cambridge University Press. doi:10.1017/CBO9780511599798. ISBN 9780511599798.
  23. ^ Das Sarma, S. (1997). "Dynamic Scaling in Epitaxial Growth". arXiv:cond-mat/9705118.
  24. ^ Oliveira, Tiago J. (2022). "Kardar-Parisi-Zhang universality class in (d+1)-dimensions". Phys. Rev. E. 106 (6) L062103. arXiv:2212.03847. Bibcode:2022PhRvE.106f2103O. doi:10.1103/PhysRevE.106.L062103. PMID 36671175.

Further reading

edit