Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Geospatial data and models for the Simulation of Hypothetical Bighead Carp Egg and Larvae Development and Transport in the Ohio River between Markland Locks and Dam and McAlpine Locks and Dam, Kentucky and Indiana, by use of the Fluvial Egg Drift Simulator

Metadata Updated: July 6, 2024

Data collection, along with hydraulic and fluvial egg transport modeling, were completed along a 70.9-mile reach of the Ohio River between Markland Locks and Dam and McAlpine Locks and Dam. Data were collected during two surveys: October 27–November 4, 2016, and June 26–29, 2017. Water-quality data collected in this reach included surface measurements and vertical profiles of water temperature, specific conductance, pH, dissolved oxygen, turbidity, relative chlorophyll, and relative phycocyanin. Streamflow and velocity data were collected simultaneously with the water-quality data at cross sections and along longitudinal lines (corresponding to the water-quality surface measurements) and at selected stationary locations (corresponding to the water-quality vertical profiles). The data were collected to understand variability of flow and water-quality conditions relative to simulated reaches of the Ohio River and to aid in identifying parts of the reach that may provide conditions favorable to spawning and recruitment habitat for bighead carp (Hypophthalmichthys nobilis). A copy of an existing hydraulic model of the Ohio River was obtained from the National Weather Service and used to simulate hydraulic conditions for four different streamflows. Streamflows used for the simulations were selected to represent a range of conditions from a high-streamflow event to a seasonal dry-weather event. Outputs from the hydraulic model were used as input to the Fluvial Egg Drift Simulator (FluEgg) along with a range of five water temperatures observed in water-quality data and four potential spawning locations to simulate the extents and quantile positions of developing bighead carp, from egg hatching to the gas bladder inflation stage, under each scenario. A total of 80 simulations were run. Results from the FluEgg scenarios (which include only the hydraulic influences on survival that result from settling, irrespective of mortality from other physical factors such as excess turbulence, or biological factors such as fertilization failure, predation or starvation) indicate that the majority of the eggs will hatch, about half will die, and a quarter of the surviving larvae will reach the gas bladder inflation stage within the modeled reach. The overall average percentage of embryos surviving to the gas bladder inflation stage was 13.1 percent. Individual simulations have embryo survival percentages as high as 49.1 percent. The highest embryo survival percentages occurred for eggs spawned at a streamflow of 38,100 cubic feet per second and water temperatures of 24°C to 30°C. Conversely, embryo survival percentages were lowest for the lowest and highest streamflows regardless of water temperature or spawn ___location. Under low water temperature, high-streamflow conditions, some of the eggs did not hatch nor did the larvae reach the gas bladder inflation stage until passing beyond the downstream model ___domain. While the final quantile positions of the eggs and larvae beyond the downstream model ___domain are unknown, the outcomes still provide useful information.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/2291913f110d3fd4090397f0a633c876
Identifier USGS:5e3c301fe4b0edb47be0eec4
Data Last Modified 20210226
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id fbc6a189-f7df-4fb2-8b8b-f7993fe27fa1
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -85.7653,38.1964,-84.9702,38.8625
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash e3a182e18e46253f33a319f9503eaf1e2f3057b4a86161e6dbf08647fd7ac202
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -85.7653, 38.1964, -85.7653, 38.8625, -84.9702, 38.8625, -84.9702, 38.1964, -85.7653, 38.1964}

Didn't find what you're looking for? Suggest a dataset here.