Content deleted Content added
forced to link to GPGPU hardware Tags: Mobile edit Mobile web edit Advanced mobile edit |
→Early research and development: needs checking as I am reasonably certain that there were other Array-processing (SIMT) machines made... but it may have been much later. hmmm Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
Line 16:
Array processing development began in the early 1960s at the [[Westinghouse Electric Corporation]] in their ''Solomon'' project. Solomon's goal was to dramatically increase math performance by using a large number of simple [[coprocessor]]s under the control of a single master [[Central processing unit]] (CPU). The CPU fed a single common instruction to all of the [[arithmetic logic unit]]s (ALUs), one per cycle, but with a different data point for each one to work on. This allowed the Solomon machine to apply a single [[algorithm]] to a large [[data set]], fed in the form of an array, leading it to be cited as an example Array processor in [[Flynn's taxonomy]].
In 1962, Westinghouse cancelled the project, but the effort was restarted by the [[University of Illinois at Urbana–Champaign]] as the [[ILLIAC IV]]. Their version of the design originally called for a 1 [[GFLOPS]] machine with 256 ALUs, but, when it was finally delivered in 1972, it had only 64 ALUs and could reach only 100 to 150 MFLOPS. Nevertheless, it showed that the basic concept was sound, and, when used on data-intensive applications, such as [[computational fluid dynamics]], the ILLIAC was the fastest machine in the world. The ILLIAC approach of using separate ALUs for each data element is not common to later designs,{{Fact or opinion|date=August 2025}} and is often referred to under a separate category of [[massively parallel]] computing: around 1972 Flynn [[Flynn's taxonomy|categorized]] this type of processing as an early form of [[single instruction, multiple threads]] (SIMT).
[[International Computers Limited]] sought to avoid many of the difficulties with the ILLIAC concept with its own [[Distributed Array Processor]] (DAP) design, categorising the ILLIAC and DAP as cellular array processors that potentially offered substantial performance benefits over conventional vector processor designs such as the CDC STAR-100 and Cray 1.<ref name="newscientist19760617_dap">{{ cite magazine | url=https://archive.org/details/bub_gb_m8S4bXj3dcMC/page/n11/mode/2up | title=Computers by the thousand | magazine=New Scientist | last1=Parkinson | first1=Dennis | date=17 June 1976 | access-date=7 July 2024 | pages=626–627 }}</ref>
|