![]() | This is a draft article. It is a work in progress open to editing by anyone. Please ensure core content policies are met before publishing it as a live Wikipedia article. Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL Last edited by Gheus (talk | contribs) 34 hours ago. (Update)
Finished drafting? |
Andre Esteva is an American researcher and entrepreneur in the field of medical artificial intelligence (AI). He is the co-founder and Chief Executive Officer (CEO) of ArteraAI, a company that develops AI tools for cancer therapy.[1][2][3][2]
Biography
editEsteva was born in Houston, Texas. He was raised in Mexico and later moved to Plano, Texas, where he graduated from Plano Senior High School.[4]
Esteva earned Bachelor of Science degrees in Electrical and Computer Engineering and in Pure Mathematics from the University of Texas at Austin, where he received the Engineering Valedictorian award. At UT Austin, he tutored high school and undergraduate students in mathematics and physics, participated in First-Year Interest Groups as a peer mentor, and was a member of Engineers Without Borders and the Tau Beta Pi Engineering Honor Society. As an undergraduate researcher, he worked in multiple laboratories, contributing to a visible light wireless communication system and developing a MATLAB-based algorithm for analyzing nuclear growth in precancerous cells. He also studied and interned abroad in Toulouse, France.[4]
Esteva earned a Master of Science in Electrical Engineering from Stanford University in 2015. He then pursued a Ph.D. in Electrical Engineering, focusing on machine learning and deep learning at the Stanford Artificial Intelligence Lab under the supervision of Sebastian Thrun and Stephen P. Boyd.[5]
In 2021, Esteva co-founded ArteraAI, where he serves as CEO.[1][2][3][6]
Esteva's research focuses on machine learning and deep learning in medical and biological systems. He co-authored a 2017 Nature paper, “Dermatologist-level classification of skin cancer with deep neural networks,” which reported that a deep learning model classified images of skin lesions with accuracy comparable to that of board-certified dermatologists.[1][7][5]
Publication
editEsteva has authored peer-reviewed publications. His most cited works include:
- Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.[7]
- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29.[8]
- Taylor, M., Liu, X., Denniston, A., Esteva, A., Ko, J., Daneshjou, R., & Chan, A.-W. (2021). Raising the bar for randomized trials involving artificial intelligence: the SPIRIT-Artificial Intelligence and CONSORT-Artificial Intelligence guidelines. Journal of Investigative Dermatology, 141(9), 2109–2111.[9]
- Esteva, A., Michalski, J. M., & Al, E. (n.d.). Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials. Digital Commons at Washington University.[10][11]
- Holste, G., van der Wal, D., Pinckaers, H., Yamashita, R., Mitani, A., & Esteva, A. (2023). Improved Multimodal Fusion for Small Datasets with Auxiliary Supervision. In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) (pp. 1–5). IEEE.[12]
- Park, S.-M., Won, D. D., Lee, B. J., Escobedo, D., Esteva, A., Aalipour, A., Ge, T. J., Kim, J. H., Suh, S., Choi, E. H., Lozano, A. X., Yao, C., Bodapati, S., Achterberg, F. B., Kim, J., Park, H., Choi, Y., Kim, W. J., Yu, J. H., Bhatt, A. M., Lee, J. K., Spitler, R., Wang, S. X., & Gambhir, S. S. (2020). Publisher Correction: A mountable toilet system for personalized health monitoring via the analysis of excreta. Nature Biomedical Engineering, 4(6), 662.[13]
- Esteva, A., Kale, A., Paulus, R., Hashimoto, K., Yin, W., Radev, D., & Socher, R. (2021). COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization. npj Digital Medicine, 4(1), Article 68.[14]
- Li, Y., Esteva, A., Kuprel, B., Novoa, R., Ko, J., & Thrun, S. (2016). Skin Cancer Detection and Tracking using Data Synthesis and Deep Learning. arXiv preprint arXiv:1612.01074.[15]
- Tward, J. D., Huang, H.-C., Esteva, A., Mohamad, O., Van Der Wal, D., Simko, J. P., DeVries, S., Zhang, J., Joun, S., Showalter, T. N., Schaeffer, E. M., Morgan, T. M., Monson, J. M., Wallace, J. A., Bahary, J.-P., Sandler, H. M., Spratt, D. E., Rodgers, J. P., Feng, F. Y., & Tran, P. T. (2024). Prostate cancer risk stratification in NRG Oncology Phase III randomized trials using multimodal deep learning with digital histopathology. JCO Precision Oncology, (8).[16]
- Christiansen, E. M., Yang, S. J., Ando, D. M., Javaherian, A., Skibinski, G., Lipnick, S., Mount, E., O’Neil, A., Shah, K., Lee, A. K., Goyal, P., Fedus, W., Poplin, R., Esteva, A., Berndl, M., Rubin, L. L., Nelson, P., & Finkbeiner, S. (2018). In silico labeling: Predicting fluorescent labels in unlabeled images. Cell, 173(3), 792–803.e19.[17]
Awards and recognition
editReferences
edit- ^ a b c "Google Scholar". scholar.google.com. Retrieved 2025-08-26.
- ^ a b c Wilser, Jeff. "ArteraAI Multimodal Artificial Intelligence: the 200 Best Inventions of 2024". TIME. Archived from the original on 2025-06-19. Retrieved 2025-08-26.
- ^ a b "finance.yahoo".
- ^ a b c "UT ECE Student Andre Esteva Receives Outstanding Scholar-Leader Award | Texas ECE - Electrical & Computer Engineering at UT Austin". www.ece.utexas.edu. 2012-01-10. Retrieved 2025-08-26.
- ^ a b c "Texas ECE alum Andre Esteva helps train a computer to identify skin cancer | Texas ECE - Electrical & Computer Engineering at UT Austin". www.ece.utexas.edu. 2017-02-03. Retrieved 2025-08-26.
- ^ a b "time".
- ^ a b Esteva, Andre; Kuprel, Brett; Novoa, Roberto A.; Ko, Justin; Swetter, Susan M.; Blau, Helen M.; Thrun, Sebastian. "Dermatologist-level classification of skin cancer with deep neural networks". Nature. 542 (7639): 115–118. doi:10.1038/nature21056. ISSN 1476-4687.
- ^ Esteva, Andre; Robicquet, Alexandre; Ramsundar, Bharath; Kuleshov, Volodymyr; DePristo, Mark; Chou, Katherine; Cui, Claire; Corrado, Greg; Thrun, Sebastian; Dean, Jeff. "A guide to deep learning in healthcare". Nature Medicine. 25 (1): 24–29. doi:10.1038/s41591-018-0316-z. ISSN 1546-170X.
- ^ Taylor, Matthew; Liu, Xiaoxuan; Denniston, Alastair; Esteva, Andre; Ko, Justin; Daneshjou, Roxana; Chan, An-Wen; SPIRIT-AI and CONSORT-AI Working Group. "Raising the Bar for Randomized Trials Involving Artificial Intelligence: The SPIRIT-Artificial Intelligence and CONSORT-Artificial Intelligence Guidelines". The Journal of Investigative Dermatology. 141 (9): 2109–2111. doi:10.1016/j.jid.2021.02.744. ISSN 1523-1747. PMID 33766511.
- ^ Esteva, Andre; Michalski, Jeff M.; al, et (2022-06-08). "Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials". npj Digital Medicine. 5 (1): 71. doi:10.1038/s41746-022-00613-w.
- ^ Esteva, Andre; Feng, Jean; van der Wal, Douwe; Huang, Shih-Cheng; Simko, Jeffry P.; DeVries, Sandy; Chen, Emmalyn; Schaeffer, Edward M.; Morgan, Todd M.; Sun, Yilun; Ghorbani, Amirata; Naik, Nikhil; Nathawani, Dhruv; Socher, Richard; Michalski, Jeff M. (2022-06-08). "Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials". npj Digital Medicine. 5 (1): 71. doi:10.1038/s41746-022-00613-w. ISSN 2398-6352.
- ^ Holste, Gregory; van der Wal, Douwe; Pinckaers, Hans; Yamashita, Rikiya; Mitani, Akinori; Esteva, Andre. "Improved Multimodal Fusion for Small Datasets with Auxiliary Supervision". 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI): 1–5. doi:10.1109/ISBI53787.2023.10230356.
- ^ Park, Seung-Min; Won, Daeyoun D.; Lee, Brian J.; Escobedo, Diego; Esteva, Andre; Aalipour, Amin; Ge, T. Jessie; Kim, Jung Ha; Suh, Susie; Choi, Elliot H.; Lozano, Alexander X.; Yao, Chengyang; Bodapati, Sunil; Achterberg, Friso B.; Kim, Jeesu. "Publisher Correction: A mountable toilet system for personalized health monitoring via the analysis of excreta". Nature Biomedical Engineering. 4 (6): 662. doi:10.1038/s41551-020-0562-5. ISSN 2157-846X. PMID 32382068.
- ^ Esteva, Andre; Kale, Anuprit; Paulus, Romain; Hashimoto, Kazuma; Yin, Wenpeng; Radev, Dragomir; Socher, Richard. "COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization". npj Digital Medicine. 4 (1). doi:10.1038/s41746-021-00437-0. ISSN 2398-6352.
- ^ Li, Yunzhu; Esteva, Andre; Kuprel, Brett; Novoa, Rob; Ko, Justin; Thrun, Sebastian. "Skin Cancer Detection and Tracking using Data Synthesis and Deep Learning". arXiv e-prints: arXiv:1612.01074. doi:10.48550/arXiv.1612.01074.
- ^ Tward, Jonathan David; Huang, Huei-Chung; Esteva, Andre; Mohamad, Osama; van der Wal, Douwe; Simko, Jeffry P.; DeVries, Sandy; Zhang, Jingbin; Joun, Songwan; Showalter, Timothy N.; Schaeffer, Edward M.; Morgan, Todd M.; Monson, Jedidiah M.; Wallace, James A.; Bahary, Jean-Paul. "Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology". JCO precision oncology. 8: e2400145. doi:10.1200/PO.24.00145. ISSN 2473-4284. PMC 11520341. PMID 39447096.
- ^ Christiansen, Eric M.; Yang, Samuel J.; Ando, D. Michael; Javaherian, Ashkan; Skibinski, Gaia; Lipnick, Scott; Mount, Elliot; O’Neil, Alison; Shah, Kevan; Lee, Alicia K.; Goyal, Piyush; Fedus, William; Poplin, Ryan; Esteva, Andre; Berndl, Marc (2018-04-19). "In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images". Cell. 173 (3): 792–803.e19. doi:10.1016/j.cell.2018.03.040. ISSN 0092-8674. PMID 29656897.