Draft:Fischler–Susskind mechanism (string theory)

  • Comment: See the Spurious citation section on the talk page. S0091 (talk) 19:44, 11 August 2025 (UTC)
  • Comment: I see little to support the name given to this article, regardless of notability of the topic. Having the same name for two distinct topics in a closely related field seems likely to be from a confusion. Also, it is described as a "procedure" in the article, which tends to refer to something quite distinct from a "mechanism". —Quondum 17:01, 11 August 2025 (UTC)
  • Comment: Willy Fischler's publications cannot be used to support notability as they are considered primary sources. S0091 (talk) 19:04, 9 August 2025 (UTC)


The Fischler–Susskind mechanism is a procedure in perturbative string theory introduced in 1986 by Willy Fischler and Leonard Susskind to cancel infrared divergences from tadpole diagrams by adjusting the background fields, thereby preserving conformal invariance.[1] The mechanism has played a role in developments in string cosmology and D-brane physics.[2]

Overview

edit

In perturbative string theory, tadpole diagrams can produce infrared divergences when the chosen background does not coincide with the true vacuum. These divergences reflect a nonzero one-point function for a massless field (e.g., the dilaton or graviton).[3][4]

The Fischler–Susskind mechanism systematically adjusts the background fields order by order so that these tadpole contributions cancel and worldsheet conformal invariance is restored.[2]

Historical context

edit

Fischler and Susskind outlined the procedure in 1986.[1] Follow-up analyses clarified the role of background shifts and their relation to beta-function consistency conditions, including work by A. A. Tseytlin and by Callan, Lovelace, Nappi, and Yost.[5][6]

Applications

edit

The mechanism has been used in several contexts:

  • String cosmology — to incorporate backreaction in time-dependent backgrounds.[5]
  • Flux compactifications and consistency conditions — e.g., tadpole resummations and cancellations in backgrounds with localized sources.[7][8]

See also

edit

References

edit
  1. ^ a b Fischler, Willy; Susskind, Leonard (1986). "Dilaton Tadpoles, String Condensates and Scale Invariance". Physics Letters B. 171 (3–4): 383–389. Bibcode:1986PhLB..173..262F. doi:10.1016/0370-2693(86)90514-9.
  2. ^ a b Becker, Katrin; Becker, Melanie; Schwarz, John H. (2007). String Theory and M-Theory: A Modern Introduction. Cambridge University Press. pp. 128–131. ISBN 9780521860697.
  3. ^ Polchinski, Joseph (1998). String Theory, Vol. 1: An Introduction to the Bosonic String. Cambridge University Press. p. 12. ISBN 9780521633031.
  4. ^ Zwiebach, Barton (2009). A First Course in String Theory (2nd ed.). Cambridge University Press. p. 481. ISBN 9780521880329.
  5. ^ a b Tseytlin, A. A. (1987). "On divergences in non-critical strings due to background vacuum shifts". Physics Letters B. 199 (4): 466–470. doi:10.1016/0370-2693(87)91699-7 (inactive 10 August 2025).{{cite journal}}: CS1 maint: DOI inactive as of August 2025 (link)
  6. ^ Callan, C. G.; Lovelace, C.; Nappi, C. R.; Yost, S. A. (1987). "String loop corrections to beta functions". Nuclear Physics B. 288: 525–550. Bibcode:1987NuPhB.288..525C. doi:10.1016/0550-3213(87)90227-6.
  7. ^ Kitazawa, N. (2008). "Tadpole Resummations in String Theory". Physics Letters B. 660: 415–419. doi:10.1016/j.physletb.2008.01.026.
  8. ^ Bena, I.; Blåbäck, J.; Graña, M.; Lüst, D. (2021). "The tadpole problem". Journal of High Energy Physics. 2021 (11): 223. arXiv:2010.10519. Bibcode:2021JHEP...11..223B. doi:10.1007/JHEP11(2021)223.

Further reading

edit
  • Polchinski, Joseph (1998). String Theory, Vol. 1: An Introduction to the Bosonic String. Cambridge University Press. ISBN 9780521633031.
  • Green, Michael B.; Schwarz, John H.; Witten, Edward (1987). Superstring Theory, Vol. 1: Introduction. Cambridge University Press. ISBN 9780521357524.
  • Becker, Katrin; Becker, Melanie; Schwarz, John H. (2007). String Theory and M-Theory: A Modern Introduction. Cambridge University Press. ISBN 9780521860697.
  • Zwiebach, Barton (2009). A First Course in String Theory (2nd ed.). Cambridge University Press. ISBN 9780521880329.
  • Kitazawa, N. (2008). "Tadpole Resummations in String Theory". Physics Letters B. 660: 415–419. doi:10.1016/j.physletb.2008.01.026.
  • Tseytlin, A. A. (1987). "On divergences in non-critical strings due to background vacuum shifts". Physics Letters B. 199 (4): 466–470. doi:10.1016/0370-2693(87)91699-7 (inactive 10 August 2025).{{cite journal}}: CS1 maint: DOI inactive as of August 2025 (link)
  • Callan, C. G.; Lovelace, C.; Nappi, C. R.; Yost, S. A. (1987). "String loop corrections to beta functions". Nuclear Physics B. 288: 525–550. Bibcode:1987NuPhB.288..525C. doi:10.1016/0550-3213(87)90227-6.
  • Bena, I.; Blåbäck, J.; Graña, M.; Lüst, D. (2021). "The tadpole problem". Journal of High Energy Physics. 2021 (11): 223. arXiv:2010.10519. Bibcode:2021JHEP...11..223B. doi:10.1007/JHEP11(2021)223.