Draft:Granular Micromechanics


Granular micromechanics provides a paradigm that bridges the discrete models to appropriate continuum models for describing material mechanical behavior at the so called macroscales[1]. Continuum models require considerably less number of parameters in contrast to those needed for accurate discrete modelling of materials. In granular micromechanics, the underlying granular nature/motif of materials is invoked by considering that material systems are composed of nearly rigid elements (or grains) such that the elastic strain energy is stored and/or energy dissipated

in the deformable mechanisms represented through interconnections or interfaces between the grains[1]. The grains are considered as geometrically bulky objects with clearly recognizable (demarcable) boundaries, which in many materials could be welded or glued together forming spatially thin inter-phases. The key underlying feature of granular micromechanics is that the relative movements of the grain centroid/barycenter can be used to describe the deformation of such material systems regardless of the ___location of the actual deformation. Granular micromechanics has been used to predict the behavior of metamaterials[2], structural elements[3], ultra high performance fiber-reinforced concrete (UHP-FRC)[4], asphalt[5], and mineralized tissue[6].




References

edit
  1. ^ a b Misra, Anil; Placidi, Luca; Barchiesi, Emilio (2022), "Continuum Models via Granular Micromechanics", Theoretical Analyses, Computations, and Experiments of Multiscale Materials: A Tribute to Francesco dell’Isola, Springer International Publishing, pp. 183–192, doi:10.1007/978-3-031-04548-6_10, ISBN 978-3-031-04548-6, retrieved 2025-08-19
  2. ^ Misra, Anil; Nejadsadeghi, Nima; De Angelo, Michele; Placidi, Luca (2020-09-01). "Chiral metamaterial predicted by granular micromechanics: verified with 1D example synthesized using additive manufacturing". Continuum Mechanics and Thermodynamics. 32 (5): 1497–1513. Bibcode:2020CMT....32.1497M. doi:10.1007/s00161-020-00862-8. ISSN 1432-0959.
  3. ^ Poorsolhjouy, Payam; Gonzalez, Marcial (2021-12-15). "Granular micromechanics modeling of beams, plates, and shells". Composite Structures. 278 114559. doi:10.1016/j.compstruct.2021.114559. ISSN 0263-8223.
  4. ^ Placidi, Luca; dell’Isola, Francesco; Kandalaft, Abdou; Luciano, Raimondo; Majorana, Carmelo; Misra, Anil (2024-07-01). "A granular micromechanic-based model for Ultra High Performance Fiber-Reinforced Concrete (UHP FRC)". International Journal of Solids and Structures. 297 112844. doi:10.1016/j.ijsolstr.2024.112844. ISSN 0020-7683.
  5. ^ Misra, Anil; Singh, Viraj; Darabi, Masoud K. (2019-09-02). "Asphalt pavement rutting simulated using granular micromechanics-based rate-dependent damage-plasticity model". International Journal of Pavement Engineering. 20 (9): 1012–1025. doi:10.1080/10298436.2017.1380804. ISSN 1029-8436.
  6. ^ Misra, Anil; Sarikaya, Rizacan (2020-03-01). "Computational analysis of tensile damage and failure of mineralized tissue assisted with experimental observations". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 234 (3): 289–298. doi:10.1177/0954411919870650. ISSN 0954-4119. PMC 7028502. PMID 31426717.