The generalized Maxwell model also known as the Maxwell–Wiechert model (after James Clerk Maxwell and E Wiechert[ 1] [ 2] ) is the most general form of the linear model for viscoelasticity . In this model, several Maxwell elements are assembled in parallel. It takes into account that the relaxation does not occur at a single time, but in a set of times. Due to the presence of molecular segments of different lengths, with shorter ones contributing less than longer ones, there is a varying time distribution. The Wiechert model shows this by having as many spring–dashpot Maxwell elements as are necessary to accurately represent the distribution. The figure on the right shows the generalised Wiechert model.[ 3] [ 4]
Schematic of Maxwell–Wiechert model
The generalized Maxwell model is widely applied to describe how materials deform under mechanical stress when both elastic and viscous effects are present. It assumes linear viscoelastic behavior and is suitable for cases involving small deformations.[ 5] Because of its ability to represent complex time-dependent responses, the model is commonly used in the study of polymers, soft tissues, and other viscoelastic solids.[ 6] The model can be expressed either in the time ___domain using a relaxation function or in the frequency ___domain through a complex modulus, making it adaptable for use in experimental and computational analyses. In engineering practice, it is often implemented using a Prony series to simulate viscoelastic behavior in finite element analysis.[ 7] [ 8]
A common mathematical formulation of the generalized Maxwell model uses a discrete relaxation spectrum , where each Maxwell element contributes a term to the overall stress relaxation behavior.[ 6] This leads to a Prony series representation of the relaxation modulus:
G
(
t
)
=
∑
i
=
1
N
G
i
exp
(
−
t
τ
i
)
{\displaystyle G(t)=\sum _{i=1}^{N}G_{i}\exp \left(-{\frac {t}{\tau _{i}}}\right)}
edit
where Gi is the modulus and 𝜏i is the relaxation time associated with the ith Maxwell element. This method works well when the number of relaxation times in the material is already known or can be estimated from experiments. A common rule of thumb is to include about one relaxation mode for each decade of time or frequency. More advanced statistical tools can also be used to find the smallest number of modes that still give a good fit, while avoiding overfitting and keeping the model physically realistic.[ 9]
Given
N
+
1
{\displaystyle N+1}
elements with moduli
E
i
{\displaystyle E_{i}}
, viscosities
η
i
{\displaystyle \eta _{i}}
, and relaxation times
τ
i
=
η
i
E
i
{\displaystyle \tau _{i}={\frac {\eta _{i}}{E_{i}}}}
The general form for the model for solids is given by [citation needed ] :
General Maxwell Solid Model (
1 )
σ
+
{\displaystyle \sigma +}
∑
n
=
1
N
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
∏
j
∈
{
i
1
,
.
.
.
,
i
n
}
τ
j
)
)
.
.
.
)
.
.
.
)
∂
n
σ
∂
t
n
{\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}}
=
{\displaystyle =}
E
0
ϵ
+
{\displaystyle E_{0}\epsilon +}
∑
n
=
1
N
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
(
E
0
+
∑
j
∈
{
i
1
,
.
.
.
,
i
n
}
E
j
)
(
∏
k
∈
{
i
1
,
.
.
.
,
i
n
}
τ
k
)
)
)
.
.
.
)
.
.
.
)
∂
n
ϵ
∂
t
n
{\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({E_{0}+\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}}
This may be more easily understood by showing the model in a slightly more expanded form:
General Maxwell Solid Model (
2 )
σ
+
{\displaystyle \sigma +}
(
∑
i
=
1
N
τ
i
)
∂
σ
∂
t
+
{\displaystyle {\left({\sum _{i=1}^{N}{\tau _{i}}}\right)}{\frac {\partial {\sigma }}{\partial {t}}}+}
(
∑
i
=
1
N
−
1
(
∑
j
=
i
+
1
N
τ
i
τ
j
)
)
∂
2
σ
∂
t
2
{\displaystyle {\left({\sum _{i=1}^{N-1}{\left({\sum _{j=i+1}^{N}{\tau _{i}\tau _{j}}}\right)}}\right)}{\frac {\partial ^{2}{\sigma }}{\partial {t}^{2}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
∏
j
∈
{
i
1
,
.
.
.
,
i
n
}
τ
j
)
)
.
.
.
)
.
.
.
)
∂
n
σ
∂
t
n
{\displaystyle \left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∏
i
=
1
N
τ
i
)
∂
N
σ
∂
t
N
{\displaystyle \left({\prod _{i=1}^{N}{\tau _{i}}}\right){\frac {\partial ^{N}{\sigma }}{\partial {t}^{N}}}}
=
{\displaystyle =}
E
0
ϵ
+
{\displaystyle E_{0}\epsilon +}
(
∑
i
=
1
N
(
E
0
+
E
i
)
τ
i
)
∂
ϵ
∂
t
+
{\displaystyle {\left({\sum _{i=1}^{N}{\left({E_{0}+E_{i}}\right)\tau _{i}}}\right)}{\frac {\partial {\epsilon }}{\partial {t}}}+}
(
∑
i
=
1
N
−
1
(
∑
j
=
i
+
1
N
(
E
0
+
E
i
+
E
j
)
τ
i
τ
j
)
)
∂
2
ϵ
∂
t
2
{\displaystyle {\left({\sum _{i=1}^{N-1}{\left({\sum _{j=i+1}^{N}{\left({E_{0}+E_{i}+E_{j}}\right)\tau _{i}\tau _{j}}}\right)}}\right)}{\frac {\partial ^{2}{\epsilon }}{\partial {t}^{2}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
(
E
0
+
∑
j
∈
{
i
1
,
.
.
.
,
i
n
}
E
j
)
(
∏
k
∈
{
i
1
,
.
.
.
,
i
n
}
τ
k
)
)
)
.
.
.
)
.
.
.
)
∂
n
ϵ
∂
t
n
{\displaystyle \left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({E_{0}+\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}
+
.
.
.
+
{\displaystyle +...+}
(
E
0
+
∑
j
=
1
N
E
j
)
(
∏
i
=
1
N
τ
i
)
∂
N
ϵ
∂
t
N
{\displaystyle \left({E_{0}+\sum _{j=1}^{N}E_{j}}\right)\left({\prod _{i=1}^{N}{\tau _{i}}}\right){\frac {\partial ^{N}{\epsilon }}{\partial {t}^{N}}}}
Following the above model with
N
+
1
=
2
{\displaystyle N+1=2}
elements yields the standard linear solid model :
Standard Linear Solid Model (
3 )
σ
+
τ
1
∂
σ
∂
t
=
E
0
ϵ
+
τ
1
(
E
0
+
E
1
)
∂
ϵ
∂
t
{\displaystyle \sigma +\tau _{1}{\frac {\partial {\sigma }}{\partial {t}}}=E_{0}\epsilon +\tau _{1}\left({E_{0}+E_{1}}\right){\frac {\partial {\epsilon }}{\partial {t}}}}
Given
N
+
1
{\displaystyle N+1}
elements with moduli
E
i
{\displaystyle E_{i}}
, viscosities
η
i
{\displaystyle \eta _{i}}
, and relaxation times
τ
i
=
η
i
E
i
{\displaystyle \tau _{i}={\frac {\eta _{i}}{E_{i}}}}
The general form for the model for fluids is given by:
General Maxwell Fluid Model (
4 )
σ
+
{\displaystyle \sigma +}
∑
n
=
1
N
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
∏
j
∈
{
i
1
,
.
.
.
,
i
n
}
τ
j
)
)
.
.
.
)
.
.
.
)
∂
n
σ
∂
t
n
{\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}}
=
{\displaystyle =}
∑
n
=
1
N
(
η
0
+
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
(
∑
j
∈
{
i
1
,
.
.
.
,
i
n
}
E
j
)
(
∏
k
∈
{
i
1
,
.
.
.
,
i
n
}
τ
k
)
)
)
.
.
.
)
.
.
.
)
∂
n
ϵ
∂
t
n
{\displaystyle \sum _{n=1}^{N}{\left({\eta _{0}+\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}}
This may be more easily understood by showing the model in a slightly more expanded form:
General Maxwell Fluid Model (
5 )
σ
+
{\displaystyle \sigma +}
(
∑
i
=
1
N
τ
i
)
∂
σ
∂
t
+
{\displaystyle {\left({\sum _{i=1}^{N}{\tau _{i}}}\right)}{\frac {\partial {\sigma }}{\partial {t}}}+}
(
∑
i
=
1
N
−
1
(
∑
j
=
i
+
1
N
τ
i
τ
j
)
)
∂
2
σ
∂
t
2
{\displaystyle {\left({\sum _{i=1}^{N-1}{\left({\sum _{j=i+1}^{N}{\tau _{i}\tau _{j}}}\right)}}\right)}{\frac {\partial ^{2}{\sigma }}{\partial {t}^{2}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
∏
j
∈
{
i
1
,
.
.
.
,
i
n
}
τ
j
)
)
.
.
.
)
.
.
.
)
∂
n
σ
∂
t
n
{\displaystyle \left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∏
i
=
1
N
τ
i
)
∂
N
σ
∂
t
N
{\displaystyle \left({\prod _{i=1}^{N}{\tau _{i}}}\right){\frac {\partial ^{N}{\sigma }}{\partial {t}^{N}}}}
=
{\displaystyle =}
(
η
0
+
∑
i
=
1
N
E
i
τ
i
)
∂
ϵ
∂
t
+
{\displaystyle {\left({\eta _{0}+\sum _{i=1}^{N}{E_{i}\tau _{i}}}\right)}{\frac {\partial {\epsilon }}{\partial {t}}}+}
(
η
0
+
∑
i
=
1
N
−
1
(
∑
j
=
i
+
1
N
(
E
i
+
E
j
)
τ
i
τ
j
)
)
∂
2
ϵ
∂
t
2
{\displaystyle {\left({\eta _{0}+\sum _{i=1}^{N-1}{\left({\sum _{j=i+1}^{N}{\left({E_{i}+E_{j}}\right)\tau _{i}\tau _{j}}}\right)}}\right)}{\frac {\partial ^{2}{\epsilon }}{\partial {t}^{2}}}}
+
.
.
.
+
{\displaystyle +...+}
(
η
0
+
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
(
∑
j
∈
{
i
1
,
.
.
.
,
i
n
}
E
j
)
(
∏
k
∈
{
i
1
,
.
.
.
,
i
n
}
τ
k
)
)
)
.
.
.
)
.
.
.
)
∂
n
ϵ
∂
t
n
{\displaystyle \left({\eta _{0}+\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}
+
.
.
.
+
{\displaystyle +...+}
(
η
0
+
(
∑
j
=
1
N
E
j
)
(
∏
i
=
1
N
τ
i
)
)
∂
N
ϵ
∂
t
N
{\displaystyle \left({\eta _{0}+\left({\sum _{j=1}^{N}E_{j}}\right)\left({\prod _{i=1}^{N}{\tau _{i}}}\right)}\right){\frac {\partial ^{N}{\epsilon }}{\partial {t}^{N}}}}
Example: three parameter fluid
edit
The analogous model to the standard linear solid model is the three parameter fluid, also known as the Jeffreys model:[ 10]
Three Parameter Maxwell Fluid Model (
6 )
σ
+
τ
1
∂
σ
∂
t
=
(
η
0
+
τ
1
E
1
∂
∂
t
)
∂
ϵ
∂
t
{\displaystyle \sigma +\tau _{1}{\frac {\partial {\sigma }}{\partial {t}}}=\left({\eta _{0}+\tau _{1}E_{1}{\frac {\partial }{\partial t}}}\right){\frac {\partial {\epsilon }}{\partial {t}}}}