Unsolved problem in mathematics
For which 2-regular -vertex graphs can the complete graph be decomposed into edge-disjoint copies of ?

In mathematics, the Oberwolfach problem is an open problem that may be formulated either as a problem of scheduling seating assignments for diners, or more abstractly as a problem in graph theory, on the edge cycle covers of complete graphs. It is named after the Oberwolfach Research Institute for Mathematics, where the problem was posed in 1967 by Gerhard Ringel.[1] It is known to be true for all sufficiently large complete graphs.

Decomposition of the complete graph into three copies of , solving the Oberwolfach problem for the input

Formulation

edit

In conferences held at Oberwolfach, it is the custom for the participants to dine together in a room with circular tables, not all the same size, and with assigned seating that rearranges the participants from meal to meal. The Oberwolfach problem asks how to make a seating chart for a given set of tables so that all tables are full at each meal and all pairs of conference participants are seated next to each other exactly once. An instance of the problem can be denoted as   where   are the given table sizes. Alternatively, when some table sizes are repeated, they may be denoted using exponential notation; for instance,   describes an instance with three tables of size five.[1]

Formulated as a problem in graph theory, the pairs of people sitting next to each other at a single meal can be represented as a disjoint union of cycle graphs   of the specified lengths, with one cycle for each of the dining tables. This union of cycles is a 2-regular graph, and every 2-regular graph has this form. If   is this 2-regular graph and has   vertices, the question is whether the complete graph   of order   can be represented as an edge-disjoint union of copies of  .[1]

In order for a solution to exist, the total number of conference participants (or equivalently, the total capacity of the tables, or the total number of vertices of the given cycle graphs) must be an odd number. For, at each meal, each participant sits next to two neighbors, so the total number of neighbors of each participant must be even, and this is only possible when the total number of participants is odd. The problem has, however, also been extended to even values of   by asking, for those  , whether all of the edges of the complete graph except for a perfect matching can be covered by copies of the given 2-regular graph. Like the ménage problem (a different mathematical problem involving seating arrangements of diners and tables), this variant of the problem can be formulated by supposing that the   diners are arranged into   married couples, and that the seating arrangements should place each diner next to each other diner except their own spouse exactly once.[2]

Known results

edit

Glock, Joos, Kim, Kühn, and Osthus[3] find a solution for all but finetely many instances of the Oberwolfach problem. It is known that for  ,  ,  , and   no solution is possible[4] and it is widely believed that all other instances have a solution.

The solution for large number for vertices involves many randomised steps. Cases for which a constructive solution is known include:

  • All instances   except   and  .[5][6][7][8][2]
  • All instances in which all of the cycles have even length.[5][9]
  • All instances (other than the known exceptions) with  .[10][4]
  • All instances for certain choices of  , belonging to infinite subsets of the natural numbers.[11][12]
  • All instances   other than the known exceptions   and  .[13]
edit

Glock, Kühn, and Osthus[14] suggested a generalisation of the Oberwolfach problem for  -uniform hypergraphs (for large  ).

Unsolved problem in mathematics
Suppose   divides   and let   be an  -vertex graph which is a vertex-disjoint union of tight cycles of length at least  . Then   is decomposable into copies of  .

More precisely, for sufficiently large   satisfying trivial necessary divisibility conditions, they conjectured that, given a collection of vertex-disjoint tight cycles   covering   vertices in total, the complete  -uniform hypergraph   can be decomposed into copies of  . This problem is equivalet to ask for a seating chart as in the original formulation, but where every set of   people sit consecutively exactly once throughout the dinners. Even the case where   concists in only one cycle is still open.

Kirkman's schoolgirl problem, of grouping fifteen schoolgirls into rows of three in seven different ways so that each pair of girls appears once in each triple, is a special case of the Oberwolfach problem,  . The problem of Hamiltonian decomposition of a complete graph   is another special case,  .[9]

Alspach's conjecture, on the decomposition of a complete graph into cycles of given sizes, is related to the Oberwolfach problem, but neither is a special case of the other. If   is a 2-regular graph with   vertices, formed from a disjoint union of cycles of certain lengths, then a solution to the Oberwolfach problem for   would also provide a decomposition of the complete graph into   copies of each of the cycles of  . However, not every decomposition of   into this many cycles of each size can be grouped into disjoint cycles that form copies of  , and on the other hand not every instance of Alspach's conjecture involves sets of cycles that have   copies of each cycle.

References

edit
  1. ^ a b c Lenz, Hanfried; Ringel, Gerhard (1991), "A brief review on Egmont Köhler's mathematical work", Discrete Mathematics, 97 (1–3): 3–16, doi:10.1016/0012-365X(91)90416-Y, MR 1140782
  2. ^ a b Huang, Charlotte; Kotzig, Anton; Rosa, Alexander (1979), "On a variation of the Oberwolfach problem", Discrete Mathematics, 27 (3): 261–277, doi:10.1016/0012-365X(79)90162-6, MR 0541472
  3. ^ Glock, Stefan; Joos, Felix; Kim, Jaehoon; Kühn, Daniela; Osthus, Deryk (2021), "Resolution of the Oberwolfach problem", Journal of the European Mathematical Society, 23 (8): 2511–2547, arXiv:1806.04644, doi:10.4171/jems/1060, MR 4269420
  4. ^ a b Salassa, F.; Dragotto, G.; Traetta, T.; Buratti, M.; Della Croce, F. (2019), Merging Combinatorial Design and Optimization: the Oberwolfach Problem, arXiv:1903.12112, Bibcode:2019arXiv190312112S
  5. ^ a b Häggkvist, Roland (1985), "A lemma on cycle decompositions", Cycles in graphs (Burnaby, B.C., 1982), North-Holland Math. Stud., vol. 115, Amsterdam: North-Holland, pp. 227–232, doi:10.1016/S0304-0208(08)73015-9, ISBN 978-0-444-87803-8, MR 0821524
  6. ^ Alspach, Brian; Häggkvist, Roland (1985), "Some observations on the Oberwolfach problem", Journal of Graph Theory, 9 (1): 177–187, doi:10.1002/jgt.3190090114, MR 0785659
  7. ^ Alspach, Brian; Schellenberg, P. J.; Stinson, D. R.; Wagner, David (1989), "The Oberwolfach problem and factors of uniform odd length cycles", Journal of Combinatorial Theory, Series A, 52 (1): 20–43, doi:10.1016/0097-3165(89)90059-9, MR 1008157
  8. ^ Hoffman, D. G.; Schellenberg, P. J. (1991), "The existence of  -factorizations of  ", Discrete Mathematics, 97 (1–3): 243–250, doi:10.1016/0012-365X(91)90440-D, MR 1140806
  9. ^ a b Bryant, Darryn; Danziger, Peter (2011), "On bipartite 2-factorizations of   and the Oberwolfach problem" (PDF), Journal of Graph Theory, 68 (1): 22–37, doi:10.1002/jgt.20538, MR 2833961
  10. ^ Deza, A.; Franek, F.; Hua, W.; Meszka, M.; Rosa, A. (2010), "Solutions to the Oberwolfach problem for orders 18 to 40" (PDF), Journal of Combinatorial Mathematics and Combinatorial Computing, 74: 95–102, MR 2675892
  11. ^ Bryant, Darryn; Scharaschkin, Victor (2009), "Complete solutions to the Oberwolfach problem for an infinite set of orders", Journal of Combinatorial Theory, Series B, 99 (6): 904–918, doi:10.1016/j.jctb.2009.03.003, MR 2558441
  12. ^ Alspach, Brian; Bryant, Darryn; Horsley, Daniel; Maenhaut, Barbara; Scharaschkin, Victor (2016), "On factorisations of complete graphs into circulant graphs and the Oberwolfach problem", Ars Mathematica Contemporanea, 11 (1): 157–173, arXiv:1411.6047, doi:10.26493/1855-3974.770.150, MR 3546656
  13. ^ Traetta, Tommaso (2013), "A complete solution to the two-table Oberwolfach problems", Journal of Combinatorial Theory, Series A, 120 (5): 984–997, doi:10.1016/j.jcta.2013.01.003, MR 3033656
  14. ^ Kühn, D.; Osthus, D. (2021), "Extremal aspects of graph and hypergraph decomposition problems", in Lo, A.; Mycroft, R.; Perarnau, G.; Treglown, A. (eds.), Surveys in Combinatorics 2021, London Mathematical Society Lecture Note Series, vol. 470, Cambridge: Cambridge University Press, pp. 279–315, doi:10.1017/9781108999737.009, ISBN 978-1-108-99973-7 {{citation}}: Check |isbn= value: checksum (help)