Riemann's existence theorem

In mathematics, specifically complex analysis, Riemann's existence theorem says, in modern formulation, that the category of compact Riemann surfaces is equivalent to the category of complex complete algebraic curves.

Sometimes, the theorem also refers to a generalization (a theorem of Grauert–Remmert),[1] which says that the category of finite topological coverings of a complex algebraic variety is equivalent to the category of finite étale coverings of the variety.

Original statement

edit

Let X be a compact Riemann surface,   distinct points in X and   complex numbers. Then there is a meromorphic function   on X such that   for each i.[2]

Proof

edit

For now, see SGA 1, Expose XII, Théorème 5.1., or SGA 4, Expose XI. 4.3.

Consequences

edit

There are a number of consequences.

By definition, if X is a complex algebraic variety, the étale fundamental group of X at a geometric point x is the projective limit

 

over all finite Galois coverings   of  . By the existence theorem, we have   Hence,   is exactly the profinite completion of the usual topological fundamental group   of X at x.[3]

See also

edit

References

edit
  1. ^ SGA 1, Expose XII, Théorème 5.1.
  2. ^ Theorem 1.2. in Ishan Levy, Galois theory and Riemann surfaces. [1]
  3. ^ Milne, A subsection called "Varieties over  " after Remark 3.3.

Works

edit
  • Harbater, David. "Riemann’s existence theorem." The Legacy of Bernhard Riemann After 150 (2015) (ed. by L. Ji, F. Oort, S.-T. Yau), Beijing-Boston: Higher Education Press and International Press, ISBN 978-1571463180
  • Ryan Patrick Catullo, Riemann Existence Theorem. A slide for the paper.
  • Grothendieck, Alexander; Raynaud, Michèle (2003) [1971], Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Paris: Société Mathématique de France, arXiv:math/0206203, Bibcode:2002math......6203G, ISBN 978-2-85629-141-2, MR 2017446
  • M. Artin, A. Grothendieck, J.-L. Verdier, SGA 4, Théorie des topos et cohomologie étale des schémas, 1963–1964, Tomes 1 à 3, Avec la participation de N. Bourbaki, P. Deligne, B. Saint-Donat, version : c46c8b4 2018-12-20 13:39:00 +0100
  • Danilov, V. I. (1996). "Cohomology of Algebraic Varieties". Algebraic Geometry II. Encyclopaedia of Mathematical Sciences. Vol. 35. pp. 1–125. doi:10.1007/978-3-642-60925-1_1. ISBN 978-3-642-64607-2.
  • Remmert, Reinhold (1998), From Riemann surfaces to complex spaces, France, Paris: S´emin. Congr., 3, Soc. Math
  • J. S. Milne (2008). Lectures on Étale Cohomology

Further reading

edit