Rule induction is an area of machine learning in which formal rules are extracted from a set of observations. The rules extracted may represent a full scientific model of the data, or merely represent local patterns in the data.

Example of a decision tree

Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures.[1]: 415-  In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.[2]: 7 [1]: 348  Rule learning algorithm are taking training data as input and creating rules by partitioning the table with cluster analysis.[2]: 7  A possible alternative over the ID3 algorithm is genetic programming which evolves a program until it fits to the data.[3]: 2 

Creating different algorithm and testing them with input data can be realized in the WEKA software.[3]: 125  Additional tools are machine learning libraries for Python, like scikit-learn.

Paradigms

edit

Some major rule induction paradigms are:

Algorithms

edit

Some rule induction algorithms are:

References

edit
  1. ^ a b Evangelos Triantaphyllou; Giovanni Felici (10 September 2006). Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Springer Science & Business Media. ISBN 978-0-387-34296-2.
  2. ^ a b Alex A. Freitas (11 November 2013). Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer Science & Business Media. ISBN 978-3-662-04923-5.
  3. ^ a b Gisele L. Pappa; Alex Freitas (27 October 2009). Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach. Springer Science & Business Media. ISBN 978-3-642-02541-9.
  4. ^ Sahami, Mehran. "Learning classification rules using lattices." Machine learning: ECML-95 (1995): 343-346.