This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (June 2013) |
The Tinkerbell map is a discrete-time dynamical system given by:

Some commonly used values of a, b, c, and d are
Like all chaotic maps, the Tinkerbell Map has also been shown to have periods; after a certain number of mapping iterations any given point shown in the map to the right will find itself once again at its starting ___location.
The origin of the name is uncertain; however, the graphical picture of the system (as shown to the right) shows a similarity to the movement of Tinker Bell over Cinderella Castle, as shown at the beginning of all films produced by Disney.

See also
editReferences
edit- C.L. Bremer & D.T. Kaplan, Markov Chain Monte Carlo Estimation of Nonlinear Dynamics from Time Series
- K.T. Alligood, T.D. Sauer & J.A. Yorke, Chaos: An Introduction to Dynamical Systems, Berlin: Springer-Verlag, 1996.
- P.E. McSharry & P.R.C. Ruffino, Asymptotic angular stability in non-linear systems: rotation numbers and winding numbers
- R.L. Davidchack, Y.-C. Lai, A. Klebanoff & E.M. Bollt, Towards complete detection of unstable periodic orbits in chaotic systems
- B. R. Hunt, Judy A. Kennedy, Tien-Yien Li, Helena E. Nusse, "SLYRB measures: natural invariant measures for chaotic systems"
- A. Goldsztejn, W. Hayes, P. Collins "Tinkerbell is Chaotic" SIAM J. Applied Dynamical Systems 10, n.4 1480-1501, 2011
External links
edit- Tinkerbell map visualization with interactive source code