Nochnitsa
edit
Amirani1746/sandbox Temporal range: Permian,
| |
---|---|
Holotype block, containing skull and partial skeleton | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Synapsida |
Clade: | Therapsida |
Clade: | †Gorgonopsia |
Genus: | †Nochnitsa Kammerer and Masyutin, 2018 |
Type species | |
† Nochnitsa geminidens Kammerer and Masyutin, 2018
|
Nochnitsa is an extinct genus of gorgonopsian therapsids who lived during an uncertain stage of the Permian in what is now European Russia. Only one species is known, N. geminidens, described in 2018 from a single specimen including a complete skull and some postcranial remains, discovered in the red beds of Kotelnich, Kirov Oblast. The genus is named in reference to Nocnitsa, a nocturnal creature from Slavic mythology. The only known specimen of Nochnitsa is one of the smallest gorgonopsians identified to date, with a skull measuring close to 8 cm (3.1 in) in length. The rare postcranial elements indicate that the animal's skeleton should be particularly slender.
Phylogenetic analyzes published since its official description consider it as the most basal gorgonopsian known, due to several anatomical characteristics wo are not present in more or less derived genera. The Vanyushonki Member, the exact site from which Nochnitsa was discovered, would have been a moist, well-vegetated landscape, which would have been periodically flooded. The site contains numerous taxa of contemporary tetrapods, including other various therapsids. The presence of large therocephalians and the smaller size of Nochnitsa and its close relative Viatkogorgon indicate that the latter occupied comparatively small predatory roles.
Discovery and naming
editThe only known specimen of Nochnitsa, cataloged KPM 310, was discovered in 1994 by the Russian paleontologist Albert J. Khlyupin in the Red Beds of Kotelnich, located along the Vyatka River in Kirov Oblast, European Russia. This specimen was found more precisely in the Vanyushonki Member, a site already known for the discovery of other contemporary therapsids, including the gorgonopsian Viatkogorgon. The datation of this site is not clear, but it seems to date to the latest Guadalupian or early Lopingian epochs. After this discovery, the specimen was subsequently prepared in the Paleontological Museum of Vyatka by Olga Masyutina.[1]
In 2018, paleontologists Christian F. Kammerer and Vladimir Masyutin named new genera of gorgonopsians and therocephalians discovered at Kotelnitch in two articles in the scientific journal PeerJ.[1][2] In their paper focusing on gorgonopsians, the specimen KPM 310 is identified as the holotype of a new genus and species, which they name Nochnitsa geminidens.[1]
Nochnitsa is named after the Nocnitsa, a nocturnal hag-like creature from Slavic mythology. Its name was intended as a parallel to the Gorgons, similarly hag-like creatures from Greek mythology, which are the namesake of many genera within Gorgonopsia and the clade as a whole. The name also reflects the nocturnal habits inferred for the genus. The type species name, geminidens, means "twin tooth" and refers to one of the autapomorphies of the species, postcanine teeth arranged in pairs.[1]
Description
editSkull
editNochnitsa is small for a gorgonopsian, with a skull only 82 millimetres (3.2 in) long. It had a relatively long snout with five incisors, a canine, and six postcanine teeth on each side. The postcanine teeth are autapomorphic for the genus in being arranged in three pairs of closely placed teeth separated by longer diastemata. In each pair, the posterior tooth is larger. The mandible is relatively slender and lacks a strong "chin", unlike other gorgonopsians.[1]
Postcranial skeleton
editAlthough incompletely known, the holotype specimen of Nochnitsa contains part of the postcranial elements with the skull, including the cervical vertebrae, some dorsal vertebrae, and associated ribs. The right forelimb is also preserved and partially articulated.[1]
In the cervical vertebrae, the axial spine is broadly rounded and similar in morphology to that of other gorgonopsians. The dorsal vertebrae are preserved as central and transverse process fragments interspersed by the ribs. The ribs are also simple and elongated. The scapula is elongated, narrow and weakly curved, comparable to that of other gorgonopsians of similar size like Cyonosaurus, but different from the anteroposteriorly broadened scapular spines of Inostrancevia.[1]
The humerus is relatively slender, having a short, poorly developed delto-pectoral ridge, where the muscles attach to the upper arm. The radius and ulna, have a distinct distal curvature, and the distal tip of the radius forms a discrete differentiated rim of the shaft. No olecranon process is visible on the ulna, but it is possible that this is the result of a lesion.[a] The preserved proximal carpal elements consist of the radial, the ulnar and two smaller, irregular elements that would probably represent the centralia. The ulnar is the longest carpus on the proximodistal side and is widened at its proximal and distal ends. The radial is a shorter and more rounded element. The possible centralia, although poorly preserved, appear to be weakly curved. The concave surface of the centralia would presumably have been articulated with the radial, based on the conditions of other gorgonopsians.[b] Several small irregular bones between the proximal carpals and the metacarpals probably represent distal carpals, but these elements are too poorly preserved to be further identified. Based on their great length relative to the other manual elements, the two best preserved elements probably represent the third and fourth metacarpals, which are the longest of all other gorgonopsians for which the manus are known. A shorter but still elongated element may represent the fifth metacarpal. A semi-articulated set of poorly preserved bones appear to represent fingers, one potentially ending in the ungual. Based on the size of the phalanx-like elements, these probably correspond to the third and fourth fingers, disarticulated from the third and fourth metacarpals. These elements are too poor for a definitive count of the phalanges, and there is no clear evidence of the reduced disc-shaped phalanges commonly present in gorgonopsians.[1]
Classification
editNochnitsa is currently the most basal gorgonopsian known, and its position is justified by several plesiomorphic criteria, such as the lowered mandibular symphysis, the low and inclined front of the dentary bone (similar to those of therocephalians), as well as a surface and a row of elongated teeth. These mentioned features are not present in derived genera.[1] The 2018 analysis by Kammerer and Masyutin, although derived from a previous analysis conducted by one of the two authors,[3] is a major revision of the phylogeny of the gorgonopsians, discovering that the derived representatives are divided into two groups, of Russian and African origin.[1] The basal position of Nochnitsa in phylogenetic analysis of gorgonopsians is still recognized in later published studies.[4][5]
The following cladogram showing the position of Nochnitsa within Gorgonopsia follows Kammerer and Rubidge (2022):[5]
Gorgonopsia |
| ||||||||||||||||||
Paleoecology
editPaleoenvironment
editNochnitsa is known from the Kotelnich locality, which consists of a series of Permian red bed exposures along the banks of the Vyatka River in Russia. It is specifically from the Vanyushonki Member, which is the oldest rock unit in the Kotelnich succession, consisting of pale or brown mudstones (clay and silts, with some fine-grained sand) as well as gray mudstone, and dark red mudstone at the base of this exposure. These mudstones were possibly deposited from suspension in standing water bodies on floodplains or shallow ephemeral lakes, that remained flooded for short periods of time, but the exact environment has not yet been determined, due to the lack of a primary structure of the sediments. The presence of rootlets, roots and tree stumps would show that the landscape represented by the member of Vanyushonki would be relatively humid and well vegetated. Although the age of the Kotelnitch faunal complex is uncertain, it may date to the same age as those found in South Africa, which date from either the Late Middle Permian or the Early Late Permian.[1][6]
The Vanyushonki Member contains abundant fossils of tetrapods contemporary to Nochnitsa, most including numerous fossils often consisting of articulated and complete skeletons. Apart from its close relative Viatkogorgon, other therapsids from the locality include the anomodont Suminia and the therocephalians Chlynovia, Gorynychus, Karenites, Perplexisaurus, Scalopodon, Scalopodontes, and Viatkosuchus. The pareiasaur Deltavjatia is particularly abundant there, and the parareptile Emeroleter is present.[1][2][7] Fossil ostracods have also been found.[6]
Ecological niche
editAs the fossil record shows, the fauna of Kotelnitch was mainly dominated by the large therocephalians, and more specifically by Gorynychus and Viatkosuchus. These two taxa being much larger than Nochnitsa and Viatkogorgon, this indicates that the gorgonopsians occupied smaller predatory roles than the large therocephalians. This is further confirmed by the fact that several gorgonopsians having appeared after the extinction of the end of the Guadalupian reach considerably larger sizes than the two previously mentioned genera.[2][4] This type of ecological niche is also similar to that seen in the Pristerognathus Assemblage Zone in the Karoo Basin, South Africa, prior to the main round of gorgonopsian diversification there.[2] However, he noted that some Guadalupian gorgonopsians, notably Phorcys, are already larger in size, indicating that not all genera shared similar roles.[5]
See also
edit- Viatkogorgon, another gorgonopsian from the Vanyushonki Member.
Notes
edit- ^ The proximal end of this feature is not complete and was partially replaced by mudstone during the fossilization of the holotype specimen.[1]
- ^ A clear intermediate is not visible, as this element is generally small in gorgonopsians and may be absent or still buried in the fossil block containing the holotype specimen.[1]
References
edit- ^ a b c d e f g h i j k l m n Christian F. Kammerer; Vladimir Masyutin (2018). "Gorgonopsian therapsids (Nochnitsa gen. nov. and Viatkogorgon) from the Permian Kotelnich locality of Russia". PeerJ. 6: e4954. doi:10.7717/peerj.4954. PMC 5995105. PMID 29900078.
- ^ a b c d Christian F. Kammerer; Vladimir Masyutin (2018). "A new therocephalian (Gorynychus masyutinae gen. et sp. nov.) from the Permian Kotelnich locality, Kirov Region, Russia". PeerJ. 6: e4933. doi:10.7717/peerj.4933. PMC 5995100. PMID 29900076.
- ^ Christian F. Kammerer (2016). "Systematics of the Rubidgeinae (Therapsida: Gorgonopsia)". PeerJ. 4: e1608. doi:10.7717/peerj.1608. PMC 4730894. PMID 26823998.
- ^ a b Eva-Maria Bendel; Christian F. Kammerer; Nikolay Kardjilov; Vincent Fernandez; Jörg Fröbisch (2018). "Cranial anatomy of the gorgonopsian Cynariops robustus based on CT-reconstruction". PLOS ONE. 13 (11): e0207367. doi:10.1371/journal.pone.0207367. PMC 6261584. PMID 30485338.
- ^ a b c Christian F. Kammerer; Bruce S. Rubidge (2022). "The earliest gorgonopsians from the Karoo Basin of South Africa". Journal of African Earth Sciences. 194: 104631. Bibcode:2022JAfES.19404631K. doi:10.1016/j.jafrearsci.2022.104631. S2CID 249977414.
- ^ a b Michael J. Benton; Andrew J. Newell; Al'bert Y. Khlyupin; Il'ya S. Shumov; Gregory D. Price; Andrey A. Kurkin (2012). "Preservation of exceptional vertebrate assemblages in Middle Permian fluviolacustrine mudstones of Kotel'nich, Russia: stratigraphy, sedimentology, and taphonomy". Palaeogeography, Palaeoclimatology, Palaeoecology. 319–320: 58–83. Bibcode:2012PPP...319...58B. doi:10.1016/j.palaeo.2012.01.005.
- ^ Elena G. Kordikova; Albert J. Khlyupin (2001). "First evidence of a neonate dentition in pareiasaurs from the Upper Permian of Russia". Acta Palaeontologica Polonica. 46 (4): 589–594. Archived from the original on 27 January 2022. Retrieved 27 January 2022.
External links
edit- North Carolina Museum of Natural Sciences (8 June 2018). "'Monstrous' new Russian saber-tooth fossils clarify early evolution of mammal lineage". ScienceDaily.
Hyneria
edit
Amirani1746/sandbox Temporal range: Late Famennian
| |
---|---|
Block containing holotype specimen of H. uldezinye | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Eotetrapodiformes |
Family: | †Tristichopteridae |
Genus: | †Hyneria Thomson, 1968 |
Type species | |
†H. lindae | |
Other species | |
Hyneria is a extinct genus of large predatory lobe-finned fish that lived during the Late Devonian (Famennian). It belongs to the family Tristichopteridae, an extinct lineage of carnivorous fishes, closely related to the ancestors of tetrapods. Two species are known, H. lindae and H. udlezinye, known respectively from the fossil record of present-day North America and South Africa.
With a size generally fixed between 2.5–3 m (8 ft 2 in – 9 ft 10 in) long, all accompanied by a very specialized dentition, Hyneria was undoubtedly a large predator which would not have hesitated to attack prey with large measurements.
Research history
editH. lindae
editThe first known fossils of Hyneria lindae were discovered in 1952 by S. R. Ebright in a large road cut on the north side of Pennsylvania Route 120, between the villages of North Bend and Hyner in Clinton County, located in Pennsylvania, USA. The precise place of this find is the site of Red Hill, a locality dating from the upper stage of the Famennian (Upper Devonian).[1] The holotype (MCZ 9284) consists of a disarticulated skull in three blocks. This specimen is soon mentioned in a 1967 article by Keith Stewart Thomson,[2] before being formally described and named the following year by the same author. The genus name Hyneria refers to the village of Hyner in Pennsylvania, close to the site of the discovery of the first fossil individual. The specific epithet lindae comes from the first name of Thomson's wife, the paleontologist who described the animal.[3]
The holotype and paratype specimens were considered as the only viable fossils belonging to the taxon until 1993, when a new collecting effort began to uncover abundant new material within Red Hill,[4] to the point of becoming one of the most abundant vertebrates in terms of presence within the Catskill Formation.[1] Some other fossils of H. lindae have been temporarily described as belonging to other tristichopterid taxa. For example, in 1956, Alfred Romer and a team from Harvard University collected a remarkably complete specimen, which they identified as coming from Eusthenodon wängsjöi. This specimen, cataloged MCZ 8825, was reclassified as H. lindae in the genus rediagnosis conducted by Edward B. Daeschler and Jason P. Downs in 2018.[1]
H. uldezinye
editThe specimens referred to the second species H. uldezinye were discovered near the town of Grahamstown in South Africa, and more precisely in the lagerstätte of Waterloo Farm, a geological site dating from the Upper Famennian, i.e. exactly the same age as the Catskill Formation. Several fossils were prepared and subsequently moved to the Albany Museum. The holotype specimen is preserved in two blocks, cataloged AM6540 and AM6528, which additionally contain bones of the stem-tetrapod Umzantsia and the placoderm Groenlandaspis.[5] The presence of the genus Hyneria within this locality was mentioned as early as 2008,[6] in particular on the basis of the comparison with other tristichopterids.[7] The naming and anatomical descriptions are done by Robert W. Gess and Per E. Ahlberg and are officially published in an article in the scientific journal PLOS ONE in February 2023. The specific epithet uldezinye comes from isiXhosa and means "he who eats the others", referring to the inferred predatory lifestyle of the species. The IsiXhosa is the widely spoken native language of southeastern South Africa, where the original fossil locality of the finds is.[5]
Description
editSize
editHyneria is a bony fish of fairly large proportions, typically ranging in size from 2.5–3 m (98–118 in) in length for H. lindae.[3][4][1][5] The size of the second known species, H. uldezinye, was once estimated to be between 2.5–4 m (98–157 in) long based on fossil analyzes before being described.[7] However, the official description of the taxon shows that the largest known specimens belonging to the species measure at least 2.7 m (110 in).[5]
Other fossil specimens attributed to the genus Hyneria seem to indicate that some representatives could have reached larger measurements, but the weak identifications of the fossil material make these assertions uncertain and require re-evaluations.[8] While the largest known jaw of H. lindae (ANSP 21432), is 38 m (1,500 in) long,[4] another specimen (ANSP 21434), containing the mandibular symphysis and jaw fragments, may have come from a mandible approaching twice that length. However, there are also rhizodontids in the Red Hill fauna, and therefore the specimen might not even belong to the genus, as the dental characteristics observed are present in the latter.[8] Unpublished specimens suggest that Hyneria could have been larger, potentially measuring up to 3.5 m (140 in) in length,[9] but the estimates are based on the dubious fossils previously mentioned[8] and those of the related genus Eusthenopteron.[9]
Skull
editThe skull roof of Hyneria suggests a broad head with a rounded snout similar to that described for Cabonnichthys and Eusthenodon, but different from the narrow head and "very pointed" snout of Mandageria or the more torpedo-shaped head of Eusthenopteron.[1] As in other tristichopterids, the postorbital bone is triangular in shape and elongated, with a posterior margin that ends in a postero-dorsal process. The maxilla is almost parallel in shape. The maxilla of H. lindae is even more extreme than that of H. udlezinye, in that the contact margin of the squamosal is concave rather than convex.[1][5]
Hyneria's mandible is long yet slender, possessing three coronoids on both sides, two pairs of fangs on the third, and an articulated quadratojugal composed of two longitudinal pits. The fangs of the dentary bones are compressed on the lingual side and have sharp keels on both sides,[1] beings besides very robust and being able to reach more than 5 cm (2.0 in).[4] The row of teeth present in the mandible is aligned and extends to the mandibular symphysis. The general dentition of Hyneria suggests a predator specializing in hunting large preys, although no such interactions are known in the fossil record.[1]
Postcranial skeleton
editClassification
editPaleobiology
editPaleoecology
editNorth America
editSouth Africa
editPopular culture
editSee also
editReferences
edit- ^ a b c d e f g h Edward B. Daeschler; Jason P. Downs (2018). "New description and diagnosis of Hyneria lindae (Sarcopterygii, Tristichopteridae) from the Upper Devonian Catskill Formation in Pennsylvania, U.S.A." Journal of Vertebrate Paleontology. 38 (3): e1448834. doi:10.1080/02724634.2018.1448834. S2CID 89661336.
- ^ Keith S. Thomson (1967). "Mechanisms of intracranial kinetics in fossil rhipidistian fishes (Crossopterygii) and their relatives". Zoological Journal of the Linnean Society. 46 (310): 223–253. doi:10.1111/j.1096-3642.1967.tb00505.x. S2CID 85884646.
- ^ a b Keith S. Thomson (1968). "A new Devonian fish (Crossopterygii: Rhipidistia) considered in relation to the origin of the Amphibia". Postilla. 124: 1–13.
- ^ a b c d Edward B. Daeschler; Neil H. Shubin (2007). "New data on Hyneria lindae (Sarcopterygii, Tristichopteridae) from the Late Devonian of Pennsylvania, USA". Journal of Vertebrate Paleontology. 27 (S3). doi:10.1080/02724634.2007.10010458.
- ^ a b c d e Robert W. Gess; Per E. Ahlberg (2023). "A high latitude Gondwanan species of the Late Devonian tristichopterid Hyneria (Osteichthyes: Sarcopterygii)". PLOS ONE. 18 (2): e0281333. doi:10.1371/journal.pone.0281333. PMC 9946258. PMID 36812170.
- ^ Robert W. Gess; Michael I. Coates (2008). "Vertebrate diversity of the Late Devonian (Famennian) deposit near Grahamstown, South Africa". Journal of Vertebrate Paleontology. 28 (3): 83.
- ^ a b Robert W. Gess; Alan K. Whitfield (2020). "Estuarine fish and tetrapod evolution: insights from a Late Devonian (Famennian) Gondwanan estuarine lake and a southern African Holocene equivalent". Biological Reviews. 95 (4): 865–888. doi:10.1111/brv.12590. PMID 32059074. S2CID 211122587.
- ^ a b c Ben Young; Robert L. Dunstone; Timothy J. Senden; Gavin C. Young (2013). "A Gigantic Sarcopterygian (Tetrapodomorph Lobe-Finned Fish) from the Upper Devonian of Gondwana (Eden, New South Wales, Australia)". PLOS ONE. 8 (3): e53871. Bibcode:2013PLoSO...853871Y. doi:10.1371/journal.pone.0053871. PMC 3590215. PMID 23483884.
- ^ a b Russell K. Engelman (2023). "A Devonian Fish Tale: A New Method of Body Length Estimation Suggests Much Smaller Sizes for Dunkleosteus terrelli (Placodermi: Arthrodira)". Diversity. 15 (3): 318. doi:10.3390/d15030318. S2CID 257131934.