x as infinite if it satisfies the conditions |x | > 1, |x | > 1 + 1, |x | > 1 + 1 + 1, ..., and infinitesimal if x ≠ 0 and a similar set of conditions holds for x and the reciprocals of the positive integers
Continuity and Limit
edit
lim
x
→
p
f
(
x
)
=
L
,
{\displaystyle \lim _{x\to p}f(x)=L,}
the function has a limit L at an input p , if f (x ) gets closer and closer to L as x moves closer and closer to p
continuity of
y
=
f
(
x
)
{\displaystyle y=f(x)}
by saying that an infinitesimal change in x necessarily produces an infinitesimal change in y
A function f is said to be continuous at c if it is both defined at c and its value at c equals the limit of f as x approaches c :
lim
x
→
c
f
(
x
)
=
f
(
c
)
.
{\displaystyle \lim _{x\to c}f(x)=f(c).}
We have here assumed that c is a limit point of the ___domain of f .
(
∀
ε
>
0
)
(
∃
δ
>
0
)
(
∀
x
∈
R
)
(
0
<
|
x
−
p
|
<
δ
⟹
|
f
(
x
)
−
L
|
<
ε
)
.
{\displaystyle (\forall \varepsilon >0)\,(\exists \delta >0)\,(\forall x\in \mathbb {R} )\,(0<|x-p|<\delta \implies |f(x)-L|<\varepsilon ).}
lim
x
→
∞
f
(
x
)
=
L
,
{\displaystyle \lim _{x\to \infty }f(x)=L,}
Differential Calculus
edit
m
=
rise
run
=
change in
y
change in
x
=
Δ
y
Δ
x
.
{\displaystyle m={\frac {\text{rise}}{\text{run}}}={\frac {{\text{change in }}y}{{\text{change in }}x}}={\frac {\Delta y}{\Delta x}}.}
L
=
lim
h
→
0
f
(
a
+
h
)
−
f
(
a
)
h
{\displaystyle L=\lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}}
For every positive real number
ε
{\displaystyle \varepsilon }
, there exists a positive real number
δ
{\displaystyle \delta }
such that, for every
h
{\displaystyle h}
such that
|
h
|
<
δ
{\displaystyle |h|<\delta }
and
h
≠
0
{\displaystyle h\neq 0}
then
f
(
a
+
h
)
{\displaystyle f(a+h)}
is defined, and
|
L
−
f
(
a
+
h
)
−
f
(
a
)
h
|
<
ε
,
{\displaystyle \left|L-{\frac {f(a+h)-f(a)}{h}}\right|<\varepsilon ,}
Leibniz Derivative Notation
edit
The first derivative of
y
=
f
(
x
)
{\displaystyle y=f(x)}
is denoted by
d
y
d
x
{\displaystyle \textstyle {\frac {dy}{dx}}}
, read as "the derivative of
y
{\displaystyle y}
with respect to
x
{\displaystyle x}
".
d
y
d
x
=
d
d
x
f
(
x
)
.
{\textstyle {\frac {dy}{dx}}={\frac {d}{dx}}f(x).}
d
n
y
d
x
n
{\textstyle {\frac {d^{n}y}{dx^{n}}}}
for the
n
{\displaystyle n}
-th derivative of
y
=
f
(
x
)
{\displaystyle y=f(x)}
d
2
y
d
x
2
=
d
d
x
(
d
d
x
f
(
x
)
)
.
{\textstyle {\frac {d^{2}y}{dx^{2}}}={\frac {d}{dx}}{\Bigl (}{\frac {d}{dx}}f(x){\Bigr )}.}
Lagrange Derivative Notation
edit
The first derivative is written as
f
′
(
x
)
{\displaystyle f'(x)}
f
(
n
)
{\displaystyle f^{(n)}}
for the
n
{\displaystyle n}
th derivative of
f
{\displaystyle f}
.
Newton Derivative Notation
edit
If
y
{\displaystyle y}
is a function of
t
{\displaystyle t}
, then the first and second derivatives can be written as
y
˙
{\displaystyle {\dot {y}}}
and
y
¨
{\displaystyle {\ddot {y}}}
Differential Operator Derivative Notation
edit
D
f
(
x
)
{\displaystyle Df(x)}
and higher derivatives are written with a superscript, so the
n
{\displaystyle n}
-th derivative is
D
n
f
(
x
)
{\displaystyle D^{n}f(x)}
Let f (x ) = x 2 be the squaring function.
f
′
(
3
)
=
lim
h
→
0
(
3
+
h
)
2
−
3
2
h
=
lim
h
→
0
9
+
6
h
+
h
2
−
9
h
=
lim
h
→
0
6
h
+
h
2
h
=
lim
h
→
0
(
6
+
h
)
=
6
{\displaystyle {\begin{aligned}f'(3)&=\lim _{h\to 0}{(3+h)^{2}-3^{2} \over {h}}\\&=\lim _{h\to 0}{9+6h+h^{2}-9 \over {h}}\\&=\lim _{h\to 0}{6h+h^{2} \over {h}}\\&=\lim _{h\to 0}(6+h)\\&=6\end{aligned}}}
Leibniz Derivative Example
edit
y
=
x
2
d
y
d
x
=
2
x
.
{\displaystyle {\begin{aligned}y&=x^{2}\\{\frac {dy}{dx}}&=2x.\end{aligned}}}
d
d
x
(
x
2
)
=
2
x
.
{\displaystyle {\frac {d}{dx}}(x^{2})=2x.}
Differentiation is linear
edit
h
(
x
)
=
a
f
(
x
)
+
b
g
(
x
)
{\displaystyle h(x)=af(x)+bg(x)}
with respect to
x
{\displaystyle x}
is:
h
′
(
x
)
=
a
f
′
(
x
)
+
b
g
′
(
x
)
.
{\displaystyle h'(x)=af'(x)+bg'(x).}
The constant factor rule
(
a
f
)
′
=
a
f
′
{\displaystyle (af)'=af'}
The sum rule
(
f
+
g
)
′
=
f
′
+
g
′
{\displaystyle (f+g)'=f'+g'}
The difference rule
(
f
−
g
)
′
=
f
′
−
g
′
.
{\displaystyle (f-g)'=f'-g'.}
d
(
a
f
+
b
g
)
d
x
=
a
d
f
d
x
+
b
d
g
d
x
.
{\displaystyle {\frac {d(af+bg)}{dx}}=a{\frac {df}{dx}}+b{\frac {dg}{dx}}.}
f
(
x
)
=
c
{\displaystyle f(x)=c}
, then
d
f
d
x
=
0
{\displaystyle {\frac {df}{dx}}=0}
f
(
x
)
=
x
r
{\displaystyle f(x)=x^{r}}
f
′
(
x
)
=
r
x
r
−
1
.
{\displaystyle f'(x)=rx^{r-1}\,.}
For the functions
f
{\displaystyle f}
and
g
{\displaystyle g}
, the derivative of the function
h
(
x
)
=
f
(
x
)
g
(
x
)
{\displaystyle h(x)=f(x)g(x)}
with respect to
x
{\displaystyle x}
is
h
′
(
x
)
=
(
f
g
)
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
.
{\displaystyle h'(x)=(fg)'(x)=f'(x)g(x)+f(x)g'(x).}
In Leibniz's notation this is written
d
(
f
g
)
d
x
=
g
d
f
d
x
+
f
d
g
d
x
.
{\displaystyle {\frac {d(fg)}{dx}}=g{\frac {df}{dx}}+f{\frac {dg}{dx}}.}
The derivative of the function
h
(
x
)
=
f
(
g
(
x
)
)
{\displaystyle h(x)=f(g(x))}
is
h
′
(
x
)
=
f
′
(
g
(
x
)
)
⋅
g
′
(
x
)
.
{\displaystyle h'(x)=f'(g(x))\cdot g'(x).}
In Leibniz's notation, this is written as:
d
d
x
h
(
x
)
=
d
d
z
f
(
z
)
|
z
=
g
(
x
)
⋅
d
d
x
g
(
x
)
,
{\displaystyle {\frac {d}{dx}}h(x)=\left.{\frac {d}{dz}}f(z)\right|_{z=g(x)}\cdot {\frac {d}{dx}}g(x),}
often abridged to
d
h
(
x
)
d
x
=
d
f
(
g
(
x
)
)
d
g
(
x
)
⋅
d
g
(
x
)
d
x
.
{\displaystyle {\frac {dh(x)}{dx}}={\frac {df(g(x))}{dg(x)}}\cdot {\frac {dg(x)}{dx}}.}
h
′
=
(
f
∘
g
)
′
=
(
f
′
∘
g
)
⋅
g
′
.
{\displaystyle h'=(f\circ g)'=(f'\circ g)\cdot g'.}
If z = f (y ) and y = g (x )
d
z
d
x
=
d
z
d
y
⋅
d
y
d
x
,
{\displaystyle {\frac {dz}{dx}}={\frac {dz}{dy}}\cdot {\frac {dy}{dx}},}
and
d
z
d
x
|
x
=
d
z
d
y
|
y
(
x
)
⋅
d
y
d
x
|
x
,
{\displaystyle \left.{\frac {dz}{dx}}\right|_{x}=\left.{\frac {dz}{dy}}\right|_{y(x)}\cdot \left.{\frac {dy}{dx}}\right|_{x},}
If y = f (u ) and u = g (x ) :
d
y
d
x
=
d
y
d
u
⋅
d
u
d
x
.
{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}\cdot {\frac {du}{dx}}.}
d
y
d
x
|
x
=
c
=
d
y
d
u
|
u
=
g
(
c
)
⋅
d
u
d
x
|
x
=
c
.
{\displaystyle \left.{\frac {dy}{dx}}\right|_{x=c}=\left.{\frac {dy}{du}}\right|_{u=g(c)}\cdot \left.{\frac {du}{dx}}\right|_{x=c}.}
f
1
∘
(
f
2
∘
⋯
(
f
n
−
1
∘
f
n
)
)
{\displaystyle f_{1}\circ (f_{2}\circ \cdots (f_{n-1}\circ f_{n}))\!}
d
f
1
d
x
=
d
f
1
d
f
2
d
f
2
d
f
3
⋯
d
f
n
d
x
.
{\displaystyle {\frac {df_{1}}{dx}}={\frac {df_{1}}{df_{2}}}{\frac {df_{2}}{df_{3}}}\cdots {\frac {df_{n}}{dx}}.}
y
=
e
sin
(
x
2
)
.
{\displaystyle y=e^{\sin(x^{2})}.}
y
=
f
(
u
)
=
e
u
,
u
=
g
(
v
)
=
sin
v
,
v
=
h
(
x
)
=
x
2
.
{\displaystyle {\begin{aligned}y&=f(u)=e^{u},\\u&=g(v)=\sin v,\\v&=h(x)=x^{2}.\end{aligned}}}
y
=
f
(
g
(
h
(
x
)
)
)
{\displaystyle y=f(g(h(x)))}
d
y
d
u
=
f
′
(
u
)
=
e
u
,
d
u
d
v
=
g
′
(
v
)
=
cos
v
,
d
v
d
x
=
h
′
(
x
)
=
2
x
.
{\displaystyle {\begin{aligned}{\frac {dy}{du}}&=f'(u)=e^{u},\\{\frac {du}{dv}}&=g'(v)=\cos v,\\{\frac {dv}{dx}}&=h'(x)=2x.\end{aligned}}}
d
y
d
x
=
d
y
d
u
|
u
=
g
(
h
(
a
)
)
⋅
d
u
d
v
|
v
=
h
(
a
)
⋅
d
v
d
x
|
x
=
a
,
{\displaystyle {\frac {dy}{dx}}=\left.{\frac {dy}{du}}\right|_{u=g(h(a))}\cdot \left.{\frac {du}{dv}}\right|_{v=h(a)}\cdot \left.{\frac {dv}{dx}}\right|_{x=a},}
or for short,
d
y
d
x
=
d
y
d
u
⋅
d
u
d
v
⋅
d
v
d
x
.
{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}\cdot {\frac {du}{dv}}\cdot {\frac {dv}{dx}}.}
The derivative function is therefore:
d
y
d
x
=
e
sin
(
x
2
)
⋅
cos
(
x
2
)
⋅
2
x
.
{\displaystyle {\frac {dy}{dx}}=e^{\sin(x^{2})}\cdot \cos(x^{2})\cdot 2x.}
Chain Rule Higher Derivatives
edit
Looks like the product rule.
f (u ) and u = g (x ) :
d
y
d
x
=
d
y
d
u
d
u
d
x
d
2
y
d
x
2
=
d
2
y
d
u
2
(
d
u
d
x
)
2
+
d
y
d
u
d
2
u
d
x
2
d
3
y
d
x
3
=
d
3
y
d
u
3
(
d
u
d
x
)
3
+
3
d
2
y
d
u
2
d
u
d
x
d
2
u
d
x
2
+
d
y
d
u
d
3
u
d
x
3
d
4
y
d
x
4
=
d
4
y
d
u
4
(
d
u
d
x
)
4
+
6
d
3
y
d
u
3
(
d
u
d
x
)
2
d
2
u
d
x
2
+
d
2
y
d
u
2
(
4
d
u
d
x
d
3
u
d
x
3
+
3
(
d
2
u
d
x
2
)
2
)
+
d
y
d
u
d
4
u
d
x
4
.
{\displaystyle {\begin{aligned}{\frac {dy}{dx}}&={\frac {dy}{du}}{\frac {du}{dx}}\\{\frac {d^{2}y}{dx^{2}}}&={\frac {d^{2}y}{du^{2}}}\left({\frac {du}{dx}}\right)^{2}+{\frac {dy}{du}}{\frac {d^{2}u}{dx^{2}}}\\{\frac {d^{3}y}{dx^{3}}}&={\frac {d^{3}y}{du^{3}}}\left({\frac {du}{dx}}\right)^{3}+3\,{\frac {d^{2}y}{du^{2}}}{\frac {du}{dx}}{\frac {d^{2}u}{dx^{2}}}+{\frac {dy}{du}}{\frac {d^{3}u}{dx^{3}}}\\{\frac {d^{4}y}{dx^{4}}}&={\frac {d^{4}y}{du^{4}}}\left({\frac {du}{dx}}\right)^{4}+6\,{\frac {d^{3}y}{du^{3}}}\left({\frac {du}{dx}}\right)^{2}{\frac {d^{2}u}{dx^{2}}}+{\frac {d^{2}y}{du^{2}}}\left(4\,{\frac {du}{dx}}{\frac {d^{3}u}{dx^{3}}}+3\,\left({\frac {d^{2}u}{dx^{2}}}\right)^{2}\right)+{\frac {dy}{du}}{\frac {d^{4}u}{dx^{4}}}.\end{aligned}}}
The quotient rule is a consequence of the chain rule and the product rule . To see this, write the function f (x )/g (x ) as the product f (x ) · 1/g (x ) . First apply the product rule:
d
d
x
(
f
(
x
)
g
(
x
)
)
=
d
d
x
(
f
(
x
)
⋅
1
g
(
x
)
)
=
f
′
(
x
)
⋅
1
g
(
x
)
+
f
(
x
)
⋅
d
d
x
(
1
g
(
x
)
)
.
{\displaystyle {\begin{aligned}{\frac {d}{dx}}\left({\frac {f(x)}{g(x)}}\right)&={\frac {d}{dx}}\left(f(x)\cdot {\frac {1}{g(x)}}\right)\\&=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot {\frac {d}{dx}}\left({\frac {1}{g(x)}}\right).\end{aligned}}}
(
f
g
)
′
=
f
′
g
−
g
′
f
g
2
{\displaystyle \left({\frac {f}{g}}\right)'={\frac {f'g-g'f}{g^{2}}}\quad }
y = g (x ) has an inverse function . Call its inverse function f so that we have x = f (y ) .
f
(
g
(
x
)
)
=
x
.
{\displaystyle f(g(x))=x.}
f
′
(
g
(
x
)
)
g
′
(
x
)
=
1.
{\displaystyle f'(g(x))g'(x)=1.}
The derivative of
h
(
x
)
=
1
f
(
x
)
{\displaystyle h(x)={\frac {1}{f(x)}}}
for any (nonvanishing) function f is:
h
′
(
x
)
=
−
f
′
(
x
)
(
f
(
x
)
)
2
{\displaystyle h'(x)=-{\frac {f'(x)}{(f(x))^{2}}}}
wherever f is non-zero.
In Leibniz's notation, this is written
d
(
1
/
f
)
d
x
=
−
1
f
2
d
f
d
x
.
{\displaystyle {\frac {d(1/f)}{dx}}=-{\frac {1}{f^{2}}}{\frac {df}{dx}}.}
Derivatives of exponential and logarithmic functions
edit
d
d
x
(
c
a
x
)
=
a
c
a
x
ln
c
,
c
>
0
{\displaystyle {\frac {d}{dx}}\left(c^{ax}\right)={ac^{ax}\ln c},\qquad c>0}
d
d
x
(
e
a
x
)
=
a
e
a
x
{\displaystyle {\frac {d}{dx}}\left(e^{ax}\right)=ae^{ax}}
d
d
x
(
log
c
x
)
=
1
x
ln
c
,
c
>
1
{\displaystyle {\frac {d}{dx}}\left(\log _{c}x\right)={1 \over x\ln c},\qquad c>1}
d
d
x
(
ln
x
)
=
1
x
,
x
>
0.
{\displaystyle {\frac {d}{dx}}\left(\ln x\right)={1 \over x},\qquad x>0.}
d
d
x
(
x
x
)
=
x
x
(
1
+
ln
x
)
.
{\displaystyle {\frac {d}{dx}}\left(x^{x}\right)=x^{x}(1+\ln x).}
d
d
x
(
f
(
x
)
g
(
x
)
)
=
g
(
x
)
f
(
x
)
g
(
x
)
−
1
d
f
d
x
+
f
(
x
)
g
(
x
)
ln
(
f
(
x
)
)
d
g
d
x
,
if
f
(
x
)
>
0
,
and if
d
f
d
x
and
d
g
d
x
exist.
{\displaystyle {\frac {d}{dx}}\left(f(x)^{g(x)}\right)=g(x)f(x)^{g(x)-1}{\frac {df}{dx}}+f(x)^{g(x)}\ln {(f(x))}{\frac {dg}{dx}},\qquad {\text{if }}f(x)>0,{\text{ and if }}{\frac {df}{dx}}{\text{ and }}{\frac {dg}{dx}}{\text{ exist.}}}
d
d
x
(
f
1
(
x
)
f
2
(
x
)
(
.
.
.
)
f
n
(
x
)
)
=
[
∑
k
=
1
n
∂
∂
x
k
(
f
1
(
x
1
)
f
2
(
x
2
)
(
.
.
.
)
f
n
(
x
n
)
)
]
|
x
1
=
x
2
=
.
.
.
=
x
n
=
x
,
if
f
i
<
n
(
x
)
>
0
and
{\displaystyle {\frac {d}{dx}}\left(f_{1}(x)^{f_{2}(x)^{\left(...\right)^{f_{n}(x)}}}\right)=\left[\sum \limits _{k=1}^{n}{\frac {\partial }{\partial x_{k}}}\left(f_{1}(x_{1})^{f_{2}(x_{2})^{\left(...\right)^{f_{n}(x_{n})}}}\right)\right]{\biggr \vert }_{x_{1}=x_{2}=...=x_{n}=x},{\text{ if }}f_{i<n}(x)>0{\text{ and }}}
d
f
i
d
x
exists.
{\displaystyle {\frac {df_{i}}{dx}}{\text{ exists. }}}
(
ln
f
)
′
=
f
′
f
{\displaystyle (\ln f)'={\frac {f'}{f}}\quad }
wherever f is positive.
Derivatives of Trigonometric Functions
edit
d
d
x
sin
x
=
cos
x
{\displaystyle {\frac {d}{dx}}\sin x=\cos x}
d
d
x
arcsin
x
=
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\arcsin x={\frac {1}{\sqrt {1-x^{2}}}}}
d
d
x
cos
x
=
−
sin
x
{\displaystyle {\frac {d}{dx}}\cos x=-\sin x}
d
d
x
arccos
x
=
−
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\arccos x=-{\frac {1}{\sqrt {1-x^{2}}}}}
d
d
x
tan
x
=
sec
2
x
=
1
cos
2
x
=
1
+
tan
2
x
{\displaystyle {\frac {d}{dx}}\tan x=\sec ^{2}x={\frac {1}{\cos ^{2}x}}=1+\tan ^{2}x}
d
d
x
arctan
x
=
1
1
+
x
2
{\displaystyle {\frac {d}{dx}}\arctan x={\frac {1}{1+x^{2}}}}
d
d
x
csc
x
=
−
csc
x
cot
x
{\displaystyle {\frac {d}{dx}}\csc x=-\csc {x}\cot {x}}
d
d
x
arccsc
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle {\frac {d}{dx}}\operatorname {arccsc} x=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
d
d
x
sec
x
=
sec
x
tan
x
{\displaystyle {\frac {d}{dx}}\sec x=\sec {x}\tan {x}}
d
d
x
arcsec
x
=
1
|
x
|
x
2
−
1
{\displaystyle {\frac {d}{dx}}\operatorname {arcsec} x={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
d
d
x
cot
x
=
−
csc
2
x
=
−
1
sin
2
x
=
−
1
−
cot
2
x
{\displaystyle {\frac {d}{dx}}\cot x=-\csc ^{2}x=-{\frac {1}{\sin ^{2}x}}=-1-\cot ^{2}x}
d
d
x
arccot
x
=
−
1
1
+
x
2
{\displaystyle {\frac {d}{dx}}\operatorname {arccot} x=-{1 \over 1+x^{2}}}
Derivatives of integrals
edit
F
(
x
)
=
∫
a
(
x
)
b
(
x
)
f
(
x
,
t
)
d
t
,
{\displaystyle F(x)=\int _{a(x)}^{b(x)}f(x,t)\,dt,}
where the functions
f
(
x
,
t
)
{\displaystyle f(x,t)}
and
∂
∂
x
f
(
x
,
t
)
{\displaystyle {\frac {\partial }{\partial x}}\,f(x,t)}
are both continuous in both
t
{\displaystyle t}
and
x
{\displaystyle x}
in some region of the
(
t
,
x
)
{\displaystyle (t,x)}
plane, including
a
(
x
)
≤
t
≤
b
(
x
)
,
{\displaystyle a(x)\leq t\leq b(x),}
x
0
≤
x
≤
x
1
{\displaystyle x_{0}\leq x\leq x_{1}}
, and the functions
a
(
x
)
{\displaystyle a(x)}
and
b
(
x
)
{\displaystyle b(x)}
are both continuous and both have continuous derivatives for
x
0
≤
x
≤
x
1
{\displaystyle x_{0}\leq x\leq x_{1}}
. Then for
x
0
≤
x
≤
x
1
{\displaystyle \,x_{0}\leq x\leq x_{1}}
:
F
′
(
x
)
=
f
(
x
,
b
(
x
)
)
b
′
(
x
)
−
f
(
x
,
a
(
x
)
)
a
′
(
x
)
+
∫
a
(
x
)
b
(
x
)
∂
∂
x
f
(
x
,
t
)
d
t
.
{\displaystyle F'(x)=f(x,b(x))\,b'(x)-f(x,a(x))\,a'(x)+\int _{a(x)}^{b(x)}{\frac {\partial }{\partial x}}\,f(x,t)\;dt\,.}
Integrals Rational Functions
edit
∫
1
x
d
x
=
ln
|
x
|
+
C
{\displaystyle \int {1 \over x}\,dx=\ln \left|x\right|+C}
∫
a
d
x
=
a
x
+
C
{\displaystyle \int a\,dx=ax+C}
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
C
(for
n
≠
−
1
)
{\displaystyle \int x^{n}\,dx={\frac {x^{n+1}}{n+1}}+C\qquad {\text{(for }}n\neq -1{\text{)}}}
∫
1
x
d
x
=
ln
|
x
|
+
C
{\displaystyle \int {1 \over x}\,dx=\ln \left|x\right|+C}
∫
c
a
x
+
b
d
x
=
c
a
ln
|
a
x
+
b
|
+
C
{\displaystyle \int {\frac {c}{ax+b}}\,dx={\frac {c}{a}}\ln \left|ax+b\right|+C}
Integrals Exponential Functions
edit
Integrals Trigonometric functions
edit
∫
sin
x
d
x
=
−
cos
x
+
C
{\displaystyle \int \sin {x}\,dx=-\cos {x}+C}
∫
cos
x
d
x
=
sin
x
+
C
{\displaystyle \int \cos {x}\,dx=\sin {x}+C}
∫
tan
x
d
x
=
ln
|
sec
x
|
+
C
=
−
ln
|
cos
x
|
+
C
{\displaystyle \int \tan {x}\,dx=\ln {\left|\sec {x}\right|}+C=-\ln {\left|\cos {x}\right|}+C}
∫
arcsin
x
d
x
=
x
arcsin
x
+
1
−
x
2
+
C
,
for
|
x
|
≤
1
{\displaystyle \int \arcsin {x}\,dx=x\arcsin {x}+{\sqrt {1-x^{2}}}+C,{\text{ for }}\vert x\vert \leq 1}
∫
arccos
x
d
x
=
x
arccos
x
−
1
−
x
2
+
C
,
for
|
x
|
≤
1
{\displaystyle \int \arccos {x}\,dx=x\arccos {x}-{\sqrt {1-x^{2}}}+C,{\text{ for }}\vert x\vert \leq 1}
∫
arctan
x
d
x
=
x
arctan
x
−
1
2
ln
|
1
+
x
2
|
+
C
,
for all real
x
{\displaystyle \int \arctan {x}\,dx=x\arctan {x}-{\frac {1}{2}}\ln {\vert 1+x^{2}\vert }+C,{\text{ for all real }}x}
∫
ln
x
d
x
=
x
ln
x
−
x
+
C
=
x
(
ln
x
−
1
)
+
C
{\displaystyle \int \ln x\,dx=x\ln x-x+C=x(\ln x-1)+C}
∫
log
a
x
d
x
=
x
log
a
x
−
x
ln
a
+
C
=
x
ln
a
(
ln
x
−
1
)
+
C
{\displaystyle \int \log _{a}x\,dx=x\log _{a}x-{\frac {x}{\ln a}}+C={\frac {x}{\ln a}}(\ln x-1)+C}
Power Rule Integration
edit
∫
x
r
d
x
=
x
r
+
1
r
+
1
+
C
{\displaystyle \int \!x^{r}\,dx={\frac {x^{r+1}}{r+1}}+C}