Projective Geometry PG(n,k) is dimension n, size k. Each is self dual with n×n Configuration matrix.
They only exist for k as a prime power, 2,3,4(=22),5,7,8,9(=32),11,13,16(=24)..., skipping 6,10,12,14,15,...
Special cases: (Not actually projective spaces)
- PG(n,1) represents the n-simplex family, with Sn+1 symmetry, aut((n+1)!).
- PG(1,k) represent k+1 points. PG(n,k) has PG(n-1,k) facets, recursively backwards, f-vectors seen as row incidences.
Projective planes: (n=2)
- PG(2,k) is configuration [(k2+k+1)k+1]
- Removing 1 vertex becomes [k(k+1)k (k2)k+1], dual [(k2)k+1 k(k+1)k]
- (73) --> (62 43) --> (43 62) Complete quadrilateral
- (134) --> (123 94) --> (94 123) Hesse configuration
Points and hyperplanes
editPoints and hyperplanes for (n,k) = (kn+1-1)/(k-1) = kn + kn-1 + ... + k + 1.
k\n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
2 | 3 | 7 | 15 | 31 | 63 |
3 | 4 | 13 | 40 | 121 | 364 |
4 | 5 | 21 | 85 | 341 | 1365 |
5 | 6 | 31 | 156 | 781 | 3906 |
6 | 7 | 43 | 259 | 1555 | 9331 |
7 | 8 | 57 | 400 | 2801 | 19608 |
8 | 9 | 73 | 585 | 4681 | 37449 |
Automorphisms
editAutomorphisms for k=ab, a=prime --> aut=(b!)(kn+1-1)(kn+1-k)(kn+1-k2)...(kn+1-kn)/(k-1)
k\n | 1 | fact(pow) | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
1 | 2 | 1 | 6 | 6 | 24 | 120 |
2 | 6 | 1 | 168 | 20160 | 9999360 | 20158709760 |
3 | 24 | 1 | 5616 | 12130560 | 2.37783E+11 | 4.20648E+16 |
4 | 120 | 2 | 120960 | 1974067200 | 5.16985E+14 | 2.16786E+21 |
5 | 720 | 1 | 372000 | 29016000000 | 5.66537E+16 | 2.76612E+24 |
7 | 5040 | 1 | 5630688 | 4.63518E+12 | 1.87035E+20 | 3.69827E+29 |
8 | 40320 | 6 | 98896896 | 2.07351E+14 | 2.78294E+22 | 2.39051E+32 |
Configuration matrices
editP(1,1)={ } | P(2,1)={3} | P(3,1)={3,3} | P(4,1)={3,3,3} | P(5,1)={3,3,3,3} | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aut(2) | Aut(6) | Aut(24) | Aut(120) | Aut(720) | ||||||||||||||
2 | 3 | 2 | 4 | 3 | 3 | 5 | 4 | 6 | 4 | 6 | 5 | 10 | 10 | 5 | ||||
2 | 3 | 2 | 6 | 2 | 2 | 10 | 3 | 3 | 2 | 15 | 4 | 6 | 4 | |||||
3 | 3 | 4 | 3 | 3 | 10 | 2 | 3 | 3 | 20 | 3 | 3 | |||||||
4 | 6 | 4 | 5 | 4 | 6 | 4 | 15 | 2 | ||||||||||
5 | 10 | 10 | 5 | 6 | ||||||||||||||
P(1,2)=3{ } | P(2,2) | P(3,2) | P(4,2) | P(5,2) | ||||||||||||||
3 | 7 | 3 | 15 | 7 | 7 | 31 | 15 | 35 | 15 | 63 | 31 | 155 | 155 | 31 | ||||
3 | 7 | 3 | 35 | 3 | 3 | 155 | 7 | 7 | 3 | 651 | 15 | 35 | 15 | |||||
7 | 7 | 15 | 7 | 7 | 155 | 3 | 7 | 7 | 1395 | 7 | 7 | |||||||
15 | 35 | 15 | 31 | 15 | 35 | 15 | 651 | 3 | ||||||||||
31 | 155 | 155 | 31 | 63 | ||||||||||||||
P(1,3)=4{ } | P(2,3) | P(3,3) | P(4,3) | P(5,3) | ||||||||||||||
4 | 13 | 4 | 40 | 13 | 13 | 121 | 40 | 130 | 40 | 364 | 121 | 1210 | 1210 | 121 | ||||
4 | 13 | 4 | 130 | 4 | 4 | 1210 | 13 | 13 | 4 | 11011 | 40 | 130 | 40 | |||||
13 | 13 | 40 | 13 | 13 | 1210 | 4 | 13 | 13 | 33880 | 13 | 13 | |||||||
40 | 130 | 40 | 121 | 40 | 130 | 40 | 11011 | 4 | ||||||||||
121 | 1210 | 1210 | 121 | 364 | ||||||||||||||
P(1,4)=5{ } | P(2,4) | P(3,4) | P(4,4) | P(5,4) | ||||||||||||||
5 | 21 | 5 | 85 | 21 | 21 | 341 | 85 | 357 | 85 | 1365 | 341 | 5797 | 5797 | 341 | ||||
5 | 21 | 5 | 357 | 5 | 5 | 5797 | 21 | 21 | 5 | 93093 | 85 | 357 | 85 | |||||
21 | 21 | 85 | 21 | 21 | 5797 | 5 | 21 | 21 | 376805 | 21 | 21 | |||||||
85 | 357 | 85 | 341 | 85 | 357 | 85 | 93093 | 5 | ||||||||||
341 | 5797 | 5797 | 341 | 1365 | ||||||||||||||
P(1,5)=6{ } | P(2,5) | P(3,5) | P(4,5) | P(5,5) | ||||||||||||||
6 | 31 | 6 | 156 | 31 | 31 | 781 | 156 | 806 | 156 | 3906 | 781 | 20306 | 20306 | 781 | ||||
6 | 31 | 6 | 806 | 6 | 6 | 20306 | 31 | 31 | 6 | 508431 | 156 | 806 | 156 | |||||
31 | 31 | 156 | 31 | 31 | 20306 | 6 | 31 | 31 | 2558556 | 31 | 31 | |||||||
156 | 806 | 156 | 781 | 156 | 806 | 156 | 508431 | 6 | ||||||||||
781 | 20306 | 20306 | 781 | 3906 |