Paleobiology and behavior

edit

Reproduction

edit
 
  • Embryo fossils[1]
  • Eggshells[2]

Growth and ontogeny

edit
 
  • Plateosaurus longbone histology[3]
  • Rapid growth[4]
  • More growth research[5]
  • Early growth[6]
  • Postcranial ontogeny[7]
  • Growth and maturity[8]
  • Elliot prosauropods[9]

Later authors cast doubt on this conclusion and suggested that quadrupedality in juvenile Massospondylus was unlikely based on the relative robustness of the femora relative to the humeri.

Sociality

edit
 
 

Classification

edit

Technical definition

edit

Sauropodomorpha was given a modern phylogenetic definition by Paul Sereno in 2007. He defined it as the most-inclusive clade containing Diplodocus, but not Triceratops or the house sparrow. It has been alternatively defined as the most-inclusive clade containing Saltasaurus, but not Iguanodon, Allosaurus, or Herrerasaurus.

Sauropodomorphs can be distinguished as a group on the basis of some of the following synapomorphies:[10]

  • The presence of large nares.
  • The distal part of the tibia is covered by an ascending process of the astragalus.
  • Their hind limbs are short when compared to their torso length.
  • The presence of three or more sacral vertebrae.
  • The teeth are thin, flat and are spatula-like, with bladed and serrated crowns.
  • The presence of a minimum of 10 cervical vertebrae that are typically elongated
  • The presence of 25 presacral vertebrae
  • The manus had a large digit I.

Prosauropoda

edit

Historical classification

edit
  • Therizinosaurs as prosauropods[11]

Modern phylogeny

edit
Stages of sauropodomorph evolution
Saturnalia, a basal sauropodomorph
Macrocollum, a "core prosauropod"
Melanorosaurus, a "near-sauropod"
Ohmdenosaurus, a true sauropod

Evolutionary history and paleobiogeography

edit

Evolutionary origin

edit
 
A map of the world as it appeared in the Norian, from which the oldest sauropodomorph remains are known
  • Origin of sauropods[14]
  • Buriolestes and prosauropod origins[15]
  • Prosauropod origins in Gondwana[16]

Sauropodomorphs probably diverged from other dinosaurs in the Middle Triassic. The earliest sauropodomorphs were likely either omnivores or obligate carnivores, which is believed to have been the ancestral state for all dinosaurs. The oldest known animals which are confidently assigned to Sauropodomorpha are the small bipedal Buriolestes and Saturnalia, which were discovered in the lower part of the Santa Maria Formation of Brazil. These rocks are dated to roughly 233 million years ago, which roughly coincides with the Carnian pluvial episode.[17]

Diversification and dispersal of "prosauropods"

edit
 
A diagram showing how different sauropodomorphs filled various ecological niches over time in the Elliot Formation
  • Diversity through time[18]
  • Non-sauropodiform plateosaurians[19]
  • Diversification of prosauropods and sauropods[20]
  • Biostratigraphy of the Elliot Formation[21]
  • Early sauropodomorph diversification[22]

Emergence and dominance of true sauropods

edit
 
Reconstruction of an Early Jurassic environment with two sauropods (back middle) and a prosauropod (back right)
  • Gondwanan ecosystems[23]
  • Triassic-Jurassic boundary[24]
  • Origin of sauropods[25]
  • Youngest sauropodiform - Yunnanosaurus (Lu et al., 2007)
  • Oldest sauropods - Lessemsaurus (Bonaparte, 1969) or Isanosaurus (Buffetaut et al., 2000)[26]
  • Oldest eusauropod - Tonganosaurus (Li et al., 2010)
  • Oldest neosauropod - Lingwulong (Xu et al., 2018)

See also

edit
edit

References

edit
  1. ^ Reisz, Robert R.; Scott, Diane; Sues, Hans-Dieter; Evans, David C.; Raath, Michael A. (2005). "Embryos of an Early Jurassic Prosauropod Dinosaur and Their Evolutionary Significance". Science. 309 (5735): 761–764. Bibcode:2005Sci...309..761R. doi:10.1126/science.1114942. PMID 16051793.
  2. ^ [1] [2]
  3. ^ Sander, P. Martin; Klein, Nicole (2005). "Developmental Plasticity in the Life History of a Prosauropod Dinosaur". Science. 310 (5755): 1800–1802. Bibcode:2005Sci...310.1800S. doi:10.1126/science.1120125. PMID 16357257.
  4. ^ Botha, Jennifer; Choiniere, Jonah N.; Benson, Roger B.J. (2022). "Rapid growth preceded gigantism in sauropodomorph evolution". Current Biology. 32 (20): 4501–4507.e2. Bibcode:2022CBio...32E4501B. doi:10.1016/j.cub.2022.08.031. PMID 36084648.
  5. ^ Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Powell, Jaime Eduardo; Martínez, Ricardo Nestor (2017). "Novel insight into the origin of the growth dynamics of sauropod dinosaurs". PLOS ONE. 12 (6): e0179707. Bibcode:2017PLoSO..1279707C. doi:10.1371/journal.pone.0179707. PMC 5487048. PMID 28654696.{{cite journal}}: CS1 maint: article number as page number (link)
  6. ^ Cerda, Ignacio Alejandro; Pol, Diego; Chinsamy, Anusuya (2014). "Osteohistological insight into the early stages of growth in Mussaurus patagonicus (Dinosauria, Sauropodomorpha)". Historical Biology. 26 (1): 110–121. Bibcode:2014HBio...26..110C. doi:10.1080/08912963.2012.763119. hdl:11336/16964.
  7. ^ Otero, Alejandro; Pol, Diego (2021). "Ontogenetic changes in the postcranial skeleton of Mussaurus patagonicus (Dinosauria, Sauropodomorpha) and their impact on the phylogenetic relationships of early sauropodomorphs". Journal of Systematic Palaeontology. 19 (21): 1467–1516. Bibcode:2021JSPal..19.1467O. doi:10.1080/14772019.2022.2039311.
  8. ^ Griebeler, EM; Klein, N; Sander, PM (2013). "Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions". PLOS ONE. 8 (6): e67012. Bibcode:2013PLoSO...867012G. doi:10.1371/journal.pone.0067012. PMC 3686781. PMID 23840575.{{cite journal}}: CS1 maint: article number as page number (link)
  9. ^ Toefy, Fay-Yaad; Krupandan, Emil; Chinsamy, Anusuya (2025). "Palaeobiology and osteohistology of South African sauropodomorph dinosaurs". Journal of Anatomy. doi:10.1111/joa.14229. PMID 39960138.
  10. ^ Martin, A.J. (2006). Introduction to the Study of Dinosaurs. Second Edition. Oxford, Blackwell Publishing. pg. 299-300. ISBN 1-4051-3413-5.
  11. ^ Paul, Gregory S. (1984). "The segnosaurian dinosaurs: Relics of the prosauropod–ornithischian transition?". Journal of Vertebrate Paleontology. 4 (4): 507–515. Bibcode:1984JVPal...4..507P. doi:10.1080/02724634.1984.10012026.
  12. ^ [3]
  13. ^ Otero, Alejandro; Krupandan, Emil; Pol, Diego; Chinsamy, Anusuya; Choiniere, Jonah (2015). "A new basal sauropodiform from South Africa and the phylogenetic relationships of basal sauropodomorphs". Zoological Journal of the Linnean Society. 174 (3): 589–634. doi:10.1111/zoj.12247.
  14. ^ Charig, A. J.; Attridge, J.; Crompton, A. W. (1965). "On the origin of the sauropods and the classification of the Saurischia". Proceedings of the Linnean Society of London. 176 (2): 197–221. doi:10.1111/j.1095-8312.1965.tb00944.x.
  15. ^ Müller, Rodrigo T.; Langer, Max C.; Bronzati, Mario; Pacheco, Cristian P.; Cabreira, Sérgio F.; Dias-Da-Silva, Sérgio (2018). "Early evolution of sauropodomorphs: Anatomy and phylogenetic relationships of a remarkably well-preserved dinosaur from the Upper Triassic of southern Brazil". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zly009.
  16. ^ Pol, Diego; Otero, Alejandro; Apaldetti, Cecilia; Martínez, Ricardo N. (2021). "Triassic sauropodomorph dinosaurs from South America: The origin and diversification of dinosaur dominated herbivorous faunas". Journal of South American Earth Sciences. 107. Bibcode:2021JSAES.10703145P. doi:10.1016/j.jsames.2020.103145.
  17. ^ Müller, Rodrigo T.; Garcia, Maurício S. (2020). "Rise of an empire: Analyzing the high diversity of the earliest sauropodomorph dinosaurs through distinct hypotheses". Historical Biology. 32 (10): 1334–1339. Bibcode:2020HBio...32.1334M. doi:10.1080/08912963.2019.1587754.
  18. ^ Barrett, Paul M.; Upchurch, Paul (2019). "4. Sauropodomorph Diversity through Time: Paleoecological and Macroevolutionary Implications". The Sauropods. pp. 125–156. doi:10.1525/9780520932333-007. ISBN 978-0-520-93233-3.
  19. ^ [4]
  20. ^ [5]
  21. ^ McPhee, Blair; Bordy, Emese; Sciscio, Lara; Choiniere, Jonah (2017). "The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary". Acta Palaeontologica Polonica. 62. doi:10.4202/app.00377.2017.
  22. ^ Müller, Rodrigo T.; Garcia, Maurício S. (2020). "Rise of an empire: Analyzing the high diversity of the earliest sauropodomorph dinosaurs through distinct hypotheses". Historical Biology. 32 (10): 1334–1339. Bibcode:2020HBio...32.1334M. doi:10.1080/08912963.2019.1587754.
  23. ^ [6]
  24. ^ Apaldetti, Cecilia; Pol, Diego; Ezcurra, Martín D.; Martínez, Ricardo N. (2021). "Sauropodomorph evolution across the Triassic–Jurassic boundary: Body size, locomotion, and their influence on morphological disparity". Scientific Reports. 11 (1): 22534. Bibcode:2021NatSR..1122534A. doi:10.1038/s41598-021-01120-w. PMC 8602272. PMID 34795322.
  25. ^ "The complete anatomy and phylogenetic relationships of <italic>Antetonitrus ingenipes</italic> (Sauropodiformes, Dinosauria): Implications for the origins of Sauropoda". Zoological Journal of the Linnean Society. 2014. doi:10.1111/zoj12127.
  26. ^ Cite error: The named reference goodbook was invoked but never defined (see the help page).

Naming and definition

edit

Sauropodiformes was named in 2007 by Paul Sereno.

Evolution

edit

Two major evolutionary transitions occurred in the non-sauropod sauropodiformes, and they are believed to have been closely correlated with one another. These were the evolution of gigantism (sizes in excess of 5 tons) and the transition from bipedal to quadrupedal locomotion.

Quadrupedality

edit

Sauropodomorphs are the only of the three major dinosaur groups (alongside theropods and ornithischians) which retained the ancestral five toes of their ancestors for their entire evolution. The name "sauropod" is in reference to this five-toed condition. The feet of prosauropods were broadly similar to herrerasaurids and primitive theropods, with a digitigrade stance (holding their metatarsals off the ground).

Gigantism

edit

Classification

edit

See also

edit

References

edit
  1. ^ Jannel, Andréas; Salisbury, Steven W.; Panagiotopoulou, Olga (2022). "Softening the steps to gigantism in sauropod dinosaurs through the evolution of a pedal pad". Science Advances. 8 (32). doi:10.1126/sciadv.abm8280. PMID 35947665.

Sauropoda

edit

Classifiction

edit

Sauropodiformes

edit

[1]

Sauropoda

edit

[2]

[1]

Eusauropoda

edit

[3]

Evolutionary history

edit

Evolutionary origin

edit

Evolution of gigantism

edit

Diversification and dispersal

edit

Continental drift and the dominance of Titanosauria

edit

"Sauropod hiatus" and extinction

edit

Dinosaur size

edit
 
Scale diagram comparing a human and the longest-known dinosaurs of five major clades
 
An adult male bee hummingbird, the smallest known and the smallest living dinosaur

Size is an important aspect of dinosaur paleontology, of interest to both the general public and professional scientists. Dinosaurs show some of the most extreme variations in size of any land animal group, ranging from tiny hummingbirds, which can weigh as little as two grams, to the extinct titanosaurs, such as Argentinosaurus and Bruhathkayosaurus[4] which could weigh as much as 50–130 t (55–143 short tons).

The latest evidence suggests that dinosaurs' average size varied through the Triassic, early Jurassic, late Jurassic and Cretaceous periods, and dinosaurs probably only became widespread during the early or mid Jurassic.[5] Predatory theropod dinosaurs, which occupied most terrestrial carnivore niches during the Mesozoic, most often fall into the 100–1,000 kg (220–2,200 lb) category when sorted by estimated weight into categories based on order of magnitude, whereas recent predatory carnivoran mammals peak in the range of 10–100 kg (22–220 lb).[6] The mode of Mesozoic dinosaur body masses is between one and ten metric tonnes.[7] This contrasts sharply with the size of Cenozoic mammals, estimated by the National Museum of Natural History as about 2 to 5 kg (4.4 to 11.0 lb).[8]

History of study

edit

Estimation methods

edit
  • Campione and Evans[9]
  • Paul and Larramendi[10][4]
  • Popularity of amateur research[11]
  • Criteria for inclusion

Allometric methods

edit

Volumetric methods

edit

Other methods

edit

Evolutionary development over time

edit

Size diversity in early dinosaurs

edit
Largest Triassic dinosaurs
The controversial theropod Gojirasaurus
Plateosaurus, one of the earliest examples of gigantism in dinosaurs

Jurassic diversification and evolution of quadrupedality

edit
  • Quadrupedality evolved: sauropods (at least once), ornithopods (twice), thyreophorans (once or twice), ceratopsians (once or twice)
  • Quadrupedality in ornithischians[12]
  • Quadrupedal Spinosaurus and refutation

Emergence of gigantism

edit
  • Benson's research
Largest Jurassic dinosaurs

Size decreases and the origin of birds

edit
 
Size diagram of various specimens of Archaeopteryx, widely considered to be one of the first birds

Dwarfism in non-avian dinosaurs

edit
Examples of dinosaurs believed to exhibit insular dwarfism

Cretaceous diversification

edit

Bird size variation in the Cenozoic

edit

Body size study by group

edit

Ornithischia

edit
Largest Cretaceous ornithischians

Published estimates

edit
  • Ornithopods
  • Marginocephalians
  • Stegosaurs
  • Ankylosaurs

Sauropodomorpha

edit
Several of the largest sauropods known from substantial remains
The sauropod Patagotitan compared to the largest extant and extinct terrestrial mammals

Published estimates

edit
  • Downsizing Dreadnaughtus[13]
  • Non-sauropod sauropodomorphs
  • True sauropods
  • Controversial or fragmentary taxa
Size estimates
  1. Argentinosaurus huinculensis - 75 tons (Mazzetta et al., 2004)
  2. Recapture Creek brachiosaur - 69 tons (Taylor & Wedel, 2013)
  3. Puertasaurus - 68 tons (Lacovara et al., 2014)
  4. Giant mamenchisaurid (Xinjiangtitan?) - 65 tons (Paul, 2019)
  5. Candeleros giant - 64 tons (Otero et al., 2021; Paes 2025)
  6. Breviparopus - 62 tons?
  7. Giant diamantinasaurian - 60 tons (Hocknull et al., 2021; Beeston et al., 2024)
  8. Ruyangosaurus - 58 tons (Paul 2016; Mo et al., 2020)
  9. "Huanghetitan" ruyangensis - 56 tons (Averianov et al., 2017; Mo et al., 2020)
  10. Kirkwood brachiosaur - 56 tons (Bivens 2022)
  11. Patagotitan - 55 tons (Carballido et al., 2017)
  12. Supersaurus - 55 tons (BYU 9024; Woodruff et al., 2024)
  13. Price River titanosaur - 55 tons (Wedel 2017)
  14. cf. Apatosaurus - 55 tons (OMNH; Wilhite 2003; Taylor & Wedel 2012)
  15. Dreadnoughtus - 55 tons (Taylor & Wedel, 2014)
  16. "Francoposeidon" - 54 tons (Neraudeau et al., 2012)
  17. Barosaurus - 53 tons (Wedel et al., 2000; BYU 20815)
  18. Sauroposeidon - 50 tons (Wedel et al., 2000)
  19. Fusuisaurus - 50 tons (Mo et al., 2020)
  20. Brachiosaurus - 50 tons (Bivens, 2022)
  21. Giraffatitan - 48 tons
  22. "Antarctosaurus" giganteus - 45 tons (Bellardini et al., 2018)
  23. Mamenchisaurus jingyanensis - 45 tons (Zhang et al., 1998)
  24. Hudiesaurus - 44 tons (Dong 1997)
  25. Diamantinasaurus - 41 tons (Klinkhamer et al., 2018; Beeston et al., 2024)
  26. Mamenchisaurus sinocanadorum - 40 tons (Moore et al., 2023)
  27. Uberabatitan - 40 tons (Silva et al., 2019)
  28. Alamosaurus - 38 tons (Fowler & Sullivan, 2011)
  29. Notocolossus, Nullotitan, Xinjiangtitan, Turiasaurus, Rebbachisaurus, Lusotitan, Borealosaurus, Paralititan

Non-avian Theropoda

edit

Published estimates

edit
  • Sources[14]
  • All theropods
  • Non-avian maniraptoriformes
  • Smallest non-avian theropods
Size estimates
  1. Tyrannosaurus rex
  2. Giganotosaurus
  3. Tyrannosaurus mcraeensis
  4. Spinosaurus
  5. Carcharodontosaurus
  6. Tyrannotitan
  7. Deinocheirus
  8. Meraxes
  9. Mapusaurus
  10. Allosaurus anax
  11. Taurovenator
  12. Therizinosaurus
  13. Acrocanthosaurus
  14. Zhuchengtyrannus
  15. Tarbosaurus
  16. Torvosaurus gurneyi
  17. Torvosaurus tanneri
  18. Oxalaia
  19. Tameryraptor

Avialae

edit

Modern birds

edit

Published estimates

edit
  • Birds
  • Smallest birds

See also

edit
edit

Theropods

edit

Sauropods

edit

Ornithischians

edit

References

edit
  1. ^ a b Gomez, Kevin; Carballido, Jose; Pol, Diego (2021). "The axial skeleton of Bagualia alba (Dinosauria: Eusauropoda) from the Early Jurassic of Patagonia". Palaeontologia Electronica. doi:10.26879/1176.
  2. ^ Holwerda, Femke M.; Rauhut, Oliver W. M.; Pol, Diego (2021-07-22). "Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi Bonaparte, 1979 (Sauropoda: Cetiosauridae)". Geodiversitas. 43 (16). doi:10.5252/geodiversitas2021v43a16. ISSN 1280-9659. S2CID 237537773.
  3. ^ Li, Ning; Zhang, Xiaoqin; Ren, Xinxin; Li, Daqing; You, Hailu (2025). "A new eusauropod (Dinosauria, Sauropodomorpha) from the Middle Jurassic of Gansu, China". Scientific Reports. 15. doi:10.1038/s41598-025-03210-5.
  4. ^ a b Paul, Gregory S.; Larramendi, Asier (2023). "Body mass estimate of Bruhathkayosaurus and other fragmentary sauropod remains suggest the largest land animals were about as big as the greatest whales". Lethaia. 56 (2): 1–11. Bibcode:2023Letha..56..2.5P. doi:10.18261/let.56.2.5.
  5. ^ Sereno PC (1999). "The evolution of dinosaurs". Science. 284 (5423): 2137–2147. doi:10.1126/science.284.5423.2137. PMID 10381873.
  6. ^ Farlow JA (1993). "On the rareness of big, fierce animals: speculations about the body sizes, population densities, and geographic ranges of predatory mammals and large, carnivorous dinosaurs". In Dodson, Peter; Gingerich, Philip (eds.). Functional Morphology and Evolution. American Journal of Science, Special Volume. Vol. 293-A. pp. 167–199.
  7. ^ Peczkis, J. (1994). "Implications of body-mass estimates for dinosaurs". Journal of Vertebrate Paleontology. 14 (4): 520–33. doi:10.1080/02724634.1995.10011575.
  8. ^ "Anatomy and evolution". National Museum of Natural History. Archived from the original on 2007-11-11. Retrieved 2007-11-21.
  9. ^ Campione, Nicolás E.; Evans, David C. (2012). "A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods". BMC Biology. 10: 60. doi:10.1186/1741-7007-10-60. PMC 3403949. PMID 22781121.
  10. ^ Paul, Gregory (2019). "Determining the Largest Known Land Animal: A Critical Comparison of Differing Methods for Restoring the Volume and Mass of Extinct Animals". Annals of Carnegie Museum. 85 (4): 335. doi:10.2992/007.085.0403.
  11. ^ Gayford, Joel H.; Engelman, Russell K.; Sternes, Phillip C.; Itano, Wayne M.; Bazzi, Mohamad; Collareta, Alberto; Salas-Gismondi, Rodolfo; Shimada, Kenshu (2024). "Cautionary tales on the use of proxies to estimate body size and form of extinct animals". Ecology and Evolution. 14 (9). Bibcode:2024EcoEv..1470218G. doi:10.1002/ece3.70218.
  12. ^ Dempsey, Matthew; Maidment, Susannah C. R.; Hedrick, Brandon P.; Bates, Karl T. (2023). "Convergent evolution of quadrupedality in ornithischian dinosaurs was achieved through disparate forelimb muscle mechanics". Proceedings of the Royal Society B: Biological Sciences. 290 (1992). doi:10.1098/rspb.2022.2435. PMC 9890092. PMID 36722082.
  13. ^ Bates, Karl T.; Falkingham, Peter L.; MacAulay, Sophie; Brassey, Charlotte; Maidment, Susannah C. R. (2015). "Downsizing a giant: Re-evaluating Dreadnoughtus body mass". Biology Letters. 11 (6). doi:10.1098/rsbl.2015.0215. PMC 4528471. PMID 26063751.
  14. ^ Therrien, François; Henderson, Donald M. (2007). "My theropod is bigger than yours … or not: Estimating body size from skull length in theropods". Journal of Vertebrate Paleontology. 27: 108. doi:10.1671/0272-4634(2007)27[108:MTIBTY]2.0.CO;2. ISSN 0272-4634.

Titanosaur classification

edit

Research history

edit

Technical diagnosis

edit

Subgroups

edit

Diamantinasauria

edit

Colossosauria

edit

Lithostrotia

edit

Saltasauroidea

edit

Other groups

edit

Relationships

edit

See also

edit

References

edit