Paleobiology and behavior
editReproduction
editGrowth and ontogeny
edit- Plateosaurus longbone histology[3]
- Rapid growth[4]
- More growth research[5]
- Early growth[6]
- Postcranial ontogeny[7]
- Growth and maturity[8]
- Elliot prosauropods[9]
Later authors cast doubt on this conclusion and suggested that quadrupedality in juvenile Massospondylus was unlikely based on the relative robustness of the femora relative to the humeri.
Sociality
editClassification
editTechnical definition
editSauropodomorpha was given a modern phylogenetic definition by Paul Sereno in 2007. He defined it as the most-inclusive clade containing Diplodocus, but not Triceratops or the house sparrow. It has been alternatively defined as the most-inclusive clade containing Saltasaurus, but not Iguanodon, Allosaurus, or Herrerasaurus.
Sauropodomorphs can be distinguished as a group on the basis of some of the following synapomorphies:[10]
- The presence of large nares.
- The distal part of the tibia is covered by an ascending process of the astragalus.
- Their hind limbs are short when compared to their torso length.
- The presence of three or more sacral vertebrae.
- The teeth are thin, flat and are spatula-like, with bladed and serrated crowns.
- The presence of a minimum of 10 cervical vertebrae that are typically elongated
- The presence of 25 presacral vertebrae
- The manus had a large digit I.
Prosauropoda
editHistorical classification
edit- Therizinosaurs as prosauropods[11]
Modern phylogeny
editEvolutionary history and paleobiogeography
editEvolutionary origin
editSauropodomorphs probably diverged from other dinosaurs in the Middle Triassic. The earliest sauropodomorphs were likely either omnivores or obligate carnivores, which is believed to have been the ancestral state for all dinosaurs. The oldest known animals which are confidently assigned to Sauropodomorpha are the small bipedal Buriolestes and Saturnalia, which were discovered in the lower part of the Santa Maria Formation of Brazil. These rocks are dated to roughly 233 million years ago, which roughly coincides with the Carnian pluvial episode.[17]
Diversification and dispersal of "prosauropods"
edit- Diversity through time[18]
- Non-sauropodiform plateosaurians[19]
- Diversification of prosauropods and sauropods[20]
- Biostratigraphy of the Elliot Formation[21]
- Early sauropodomorph diversification[22]
Emergence and dominance of true sauropods
edit- Gondwanan ecosystems[23]
- Triassic-Jurassic boundary[24]
- Origin of sauropods[25]
- Youngest sauropodiform - Yunnanosaurus (Lu et al., 2007)
- Oldest sauropods - Lessemsaurus (Bonaparte, 1969) or Isanosaurus (Buffetaut et al., 2000)[26]
- Oldest eusauropod - Tonganosaurus (Li et al., 2010)
- Oldest neosauropod - Lingwulong (Xu et al., 2018)
See also
editGallery
editReferences
edit- ^ Reisz, Robert R.; Scott, Diane; Sues, Hans-Dieter; Evans, David C.; Raath, Michael A. (2005). "Embryos of an Early Jurassic Prosauropod Dinosaur and Their Evolutionary Significance". Science. 309 (5735): 761–764. Bibcode:2005Sci...309..761R. doi:10.1126/science.1114942. PMID 16051793.
- ^ [1] [2]
- ^ Sander, P. Martin; Klein, Nicole (2005). "Developmental Plasticity in the Life History of a Prosauropod Dinosaur". Science. 310 (5755): 1800–1802. Bibcode:2005Sci...310.1800S. doi:10.1126/science.1120125. PMID 16357257.
- ^ Botha, Jennifer; Choiniere, Jonah N.; Benson, Roger B.J. (2022). "Rapid growth preceded gigantism in sauropodomorph evolution". Current Biology. 32 (20): 4501–4507.e2. Bibcode:2022CBio...32E4501B. doi:10.1016/j.cub.2022.08.031. PMID 36084648.
- ^ Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Powell, Jaime Eduardo; Martínez, Ricardo Nestor (2017). "Novel insight into the origin of the growth dynamics of sauropod dinosaurs". PLOS ONE. 12 (6): e0179707. Bibcode:2017PLoSO..1279707C. doi:10.1371/journal.pone.0179707. PMC 5487048. PMID 28654696.
{{cite journal}}
: CS1 maint: article number as page number (link) - ^ Cerda, Ignacio Alejandro; Pol, Diego; Chinsamy, Anusuya (2014). "Osteohistological insight into the early stages of growth in Mussaurus patagonicus (Dinosauria, Sauropodomorpha)". Historical Biology. 26 (1): 110–121. Bibcode:2014HBio...26..110C. doi:10.1080/08912963.2012.763119. hdl:11336/16964.
- ^ Otero, Alejandro; Pol, Diego (2021). "Ontogenetic changes in the postcranial skeleton of Mussaurus patagonicus (Dinosauria, Sauropodomorpha) and their impact on the phylogenetic relationships of early sauropodomorphs". Journal of Systematic Palaeontology. 19 (21): 1467–1516. Bibcode:2021JSPal..19.1467O. doi:10.1080/14772019.2022.2039311.
- ^ Griebeler, EM; Klein, N; Sander, PM (2013). "Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions". PLOS ONE. 8 (6): e67012. Bibcode:2013PLoSO...867012G. doi:10.1371/journal.pone.0067012. PMC 3686781. PMID 23840575.
{{cite journal}}
: CS1 maint: article number as page number (link) - ^ Toefy, Fay-Yaad; Krupandan, Emil; Chinsamy, Anusuya (2025). "Palaeobiology and osteohistology of South African sauropodomorph dinosaurs". Journal of Anatomy. doi:10.1111/joa.14229. PMID 39960138.
- ^ Martin, A.J. (2006). Introduction to the Study of Dinosaurs. Second Edition. Oxford, Blackwell Publishing. pg. 299-300. ISBN 1-4051-3413-5.
- ^ Paul, Gregory S. (1984). "The segnosaurian dinosaurs: Relics of the prosauropod–ornithischian transition?". Journal of Vertebrate Paleontology. 4 (4): 507–515. Bibcode:1984JVPal...4..507P. doi:10.1080/02724634.1984.10012026.
- ^ [3]
- ^ Otero, Alejandro; Krupandan, Emil; Pol, Diego; Chinsamy, Anusuya; Choiniere, Jonah (2015). "A new basal sauropodiform from South Africa and the phylogenetic relationships of basal sauropodomorphs". Zoological Journal of the Linnean Society. 174 (3): 589–634. doi:10.1111/zoj.12247.
- ^ Charig, A. J.; Attridge, J.; Crompton, A. W. (1965). "On the origin of the sauropods and the classification of the Saurischia". Proceedings of the Linnean Society of London. 176 (2): 197–221. doi:10.1111/j.1095-8312.1965.tb00944.x.
- ^ Müller, Rodrigo T.; Langer, Max C.; Bronzati, Mario; Pacheco, Cristian P.; Cabreira, Sérgio F.; Dias-Da-Silva, Sérgio (2018). "Early evolution of sauropodomorphs: Anatomy and phylogenetic relationships of a remarkably well-preserved dinosaur from the Upper Triassic of southern Brazil". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zly009.
- ^ Pol, Diego; Otero, Alejandro; Apaldetti, Cecilia; Martínez, Ricardo N. (2021). "Triassic sauropodomorph dinosaurs from South America: The origin and diversification of dinosaur dominated herbivorous faunas". Journal of South American Earth Sciences. 107. Bibcode:2021JSAES.10703145P. doi:10.1016/j.jsames.2020.103145.
- ^ Müller, Rodrigo T.; Garcia, Maurício S. (2020). "Rise of an empire: Analyzing the high diversity of the earliest sauropodomorph dinosaurs through distinct hypotheses". Historical Biology. 32 (10): 1334–1339. Bibcode:2020HBio...32.1334M. doi:10.1080/08912963.2019.1587754.
- ^ Barrett, Paul M.; Upchurch, Paul (2019). "4. Sauropodomorph Diversity through Time: Paleoecological and Macroevolutionary Implications". The Sauropods. pp. 125–156. doi:10.1525/9780520932333-007. ISBN 978-0-520-93233-3.
- ^ [4]
- ^ [5]
- ^ McPhee, Blair; Bordy, Emese; Sciscio, Lara; Choiniere, Jonah (2017). "The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary". Acta Palaeontologica Polonica. 62. doi:10.4202/app.00377.2017.
- ^ Müller, Rodrigo T.; Garcia, Maurício S. (2020). "Rise of an empire: Analyzing the high diversity of the earliest sauropodomorph dinosaurs through distinct hypotheses". Historical Biology. 32 (10): 1334–1339. Bibcode:2020HBio...32.1334M. doi:10.1080/08912963.2019.1587754.
- ^ [6]
- ^ Apaldetti, Cecilia; Pol, Diego; Ezcurra, Martín D.; Martínez, Ricardo N. (2021). "Sauropodomorph evolution across the Triassic–Jurassic boundary: Body size, locomotion, and their influence on morphological disparity". Scientific Reports. 11 (1): 22534. Bibcode:2021NatSR..1122534A. doi:10.1038/s41598-021-01120-w. PMC 8602272. PMID 34795322.
- ^ "The complete anatomy and phylogenetic relationships of <italic>Antetonitrus ingenipes</italic> (Sauropodiformes, Dinosauria): Implications for the origins of Sauropoda". Zoological Journal of the Linnean Society. 2014. doi:10.1111/zoj12127.
- ^ Cite error: The named reference
goodbook
was invoked but never defined (see the help page).
Naming and definition
editSauropodiformes was named in 2007 by Paul Sereno.
Evolution
editTwo major evolutionary transitions occurred in the non-sauropod sauropodiformes, and they are believed to have been closely correlated with one another. These were the evolution of gigantism (sizes in excess of 5 tons) and the transition from bipedal to quadrupedal locomotion.
Quadrupedality
edit- Feet[1]
Sauropodomorphs are the only of the three major dinosaur groups (alongside theropods and ornithischians) which retained the ancestral five toes of their ancestors for their entire evolution. The name "sauropod" is in reference to this five-toed condition. The feet of prosauropods were broadly similar to herrerasaurids and primitive theropods, with a digitigrade stance (holding their metatarsals off the ground).
Gigantism
editClassification
editSee also
editReferences
edit- ^ Jannel, Andréas; Salisbury, Steven W.; Panagiotopoulou, Olga (2022). "Softening the steps to gigantism in sauropod dinosaurs through the evolution of a pedal pad". Science Advances. 8 (32). doi:10.1126/sciadv.abm8280. PMID 35947665.
Sauropoda
editClassifiction
editSauropodiformes
edit
| ||||||||||||||||||||||
Sauropoda
editEusauropoda
editEvolutionary history
editEvolutionary origin
editEvolution of gigantism
editDiversification and dispersal
editContinental drift and the dominance of Titanosauria
edit"Sauropod hiatus" and extinction
editDinosaur size
editSize is an important aspect of dinosaur paleontology, of interest to both the general public and professional scientists. Dinosaurs show some of the most extreme variations in size of any land animal group, ranging from tiny hummingbirds, which can weigh as little as two grams, to the extinct titanosaurs, such as Argentinosaurus and Bruhathkayosaurus[4] which could weigh as much as 50–130 t (55–143 short tons).
The latest evidence suggests that dinosaurs' average size varied through the Triassic, early Jurassic, late Jurassic and Cretaceous periods, and dinosaurs probably only became widespread during the early or mid Jurassic.[5] Predatory theropod dinosaurs, which occupied most terrestrial carnivore niches during the Mesozoic, most often fall into the 100–1,000 kg (220–2,200 lb) category when sorted by estimated weight into categories based on order of magnitude, whereas recent predatory carnivoran mammals peak in the range of 10–100 kg (22–220 lb).[6] The mode of Mesozoic dinosaur body masses is between one and ten metric tonnes.[7] This contrasts sharply with the size of Cenozoic mammals, estimated by the National Museum of Natural History as about 2 to 5 kg (4.4 to 11.0 lb).[8]
History of study
editEstimation methods
edit- Campione and Evans[9]
- Paul and Larramendi[10][4]
- Popularity of amateur research[11]
- Criteria for inclusion
Allometric methods
editVolumetric methods
editOther methods
editEvolutionary development over time
editSize diversity in early dinosaurs
editJurassic diversification and evolution of quadrupedality
edit- Quadrupedality evolved: sauropods (at least once), ornithopods (twice), thyreophorans (once or twice), ceratopsians (once or twice)
- Quadrupedality in ornithischians[12]
- Quadrupedal Spinosaurus and refutation
Emergence of gigantism
edit- Benson's research
Size decreases and the origin of birds
editDwarfism in non-avian dinosaurs
editCretaceous diversification
editBird size variation in the Cenozoic
editBody size study by group
editOrnithischia
editPublished estimates
edit- Ornithopods
- Marginocephalians
- Stegosaurs
- Ankylosaurs
Sauropodomorpha
editPublished estimates
edit- Downsizing Dreadnaughtus[13]
- Non-sauropod sauropodomorphs
- True sauropods
- Controversial or fragmentary taxa
- Size estimates
- Argentinosaurus huinculensis - 75 tons (Mazzetta et al., 2004)
- Recapture Creek brachiosaur - 69 tons (Taylor & Wedel, 2013)
- Puertasaurus - 68 tons (Lacovara et al., 2014)
- Giant mamenchisaurid (Xinjiangtitan?) - 65 tons (Paul, 2019)
- Candeleros giant - 64 tons (Otero et al., 2021; Paes 2025)
- Breviparopus - 62 tons?
- Giant diamantinasaurian - 60 tons (Hocknull et al., 2021; Beeston et al., 2024)
- Ruyangosaurus - 58 tons (Paul 2016; Mo et al., 2020)
- "Huanghetitan" ruyangensis - 56 tons (Averianov et al., 2017; Mo et al., 2020)
- Kirkwood brachiosaur - 56 tons (Bivens 2022)
- Patagotitan - 55 tons (Carballido et al., 2017)
- Supersaurus - 55 tons (BYU 9024; Woodruff et al., 2024)
- Price River titanosaur - 55 tons (Wedel 2017)
- cf. Apatosaurus - 55 tons (OMNH; Wilhite 2003; Taylor & Wedel 2012)
- Dreadnoughtus - 55 tons (Taylor & Wedel, 2014)
- "Francoposeidon" - 54 tons (Neraudeau et al., 2012)
- Barosaurus - 53 tons (Wedel et al., 2000; BYU 20815)
- Sauroposeidon - 50 tons (Wedel et al., 2000)
- Fusuisaurus - 50 tons (Mo et al., 2020)
- Brachiosaurus - 50 tons (Bivens, 2022)
- Giraffatitan - 48 tons
- "Antarctosaurus" giganteus - 45 tons (Bellardini et al., 2018)
- Mamenchisaurus jingyanensis - 45 tons (Zhang et al., 1998)
- Hudiesaurus - 44 tons (Dong 1997)
- Diamantinasaurus - 41 tons (Klinkhamer et al., 2018; Beeston et al., 2024)
- Mamenchisaurus sinocanadorum - 40 tons (Moore et al., 2023)
- Uberabatitan - 40 tons (Silva et al., 2019)
- Alamosaurus - 38 tons (Fowler & Sullivan, 2011)
- Notocolossus, Nullotitan, Xinjiangtitan, Turiasaurus, Rebbachisaurus, Lusotitan, Borealosaurus, Paralititan
Non-avian Theropoda
editPublished estimates
edit- Sources[14]
- All theropods
- Non-avian maniraptoriformes
- Smallest non-avian theropods
- Size estimates
- Tyrannosaurus rex
- Giganotosaurus
- Tyrannosaurus mcraeensis
- Spinosaurus
- Carcharodontosaurus
- Tyrannotitan
- Deinocheirus
- Meraxes
- Mapusaurus
- Allosaurus anax
- Taurovenator
- Therizinosaurus
- Acrocanthosaurus
- Zhuchengtyrannus
- Tarbosaurus
- Torvosaurus gurneyi
- Torvosaurus tanneri
- Oxalaia
- Tameryraptor
Avialae
editModern birds
editPublished estimates
edit- Birds
- Smallest birds
See also
edit- Largest prehistoric animals
- List of largest birds
- List of lost dinosaur specimens
- Megafauna
- Pterosaur size
Gallery
editTheropods
edit-
RSM P2523.8 (aka "Scotty"), generally considered to be the largest specimen of Tyrannosaurus
-
Several of the largest theropods
-
Size of various specimens of Spinosaurus
-
Size of various therizinosaurids
-
Size of Deinocheirus, the largest herbivorous theropod
-
Size of several alvarezsaurids, which were among the smallest dinosaurs
-
Large birds
-
Size of Pelagornis compared to other large birds
-
Several of the largest birds compared to large pterosaurs
-
Bee hummingbird
-
Small halszkaraptorines
-
Utahraptor, the largest known paravian
-
Several dromaeosaurs, including two of the largest, Austroraptor and Utahraptor
-
large maniraptorans, including birds
-
Kairuku
-
Anthropornis and an emperor penguin
-
Size of various phorusrhachids
-
Size of the largest anserimorphs
Sauropods
editOrnithischians
edit-
Size of both species of Triceratops
-
Fauna from the Hell Creek Formation, including several of the largest dinosaurs from several clades
-
Scelidosaurus, which may have been quadrupedal
-
Tenontosaurus, an early quadrupedal ornithopod
-
Iguanodon, an early member of hadrosauriformes which was primarily quadrupedal
-
Auroraceratops, a stem-ceratopsian which may have been quadrupedal
-
Koreanosaurus, a thescelosaurid which evolved quadrupedality without gigantism
References
edit- ^ a b Gomez, Kevin; Carballido, Jose; Pol, Diego (2021). "The axial skeleton of Bagualia alba (Dinosauria: Eusauropoda) from the Early Jurassic of Patagonia". Palaeontologia Electronica. doi:10.26879/1176.
- ^ Holwerda, Femke M.; Rauhut, Oliver W. M.; Pol, Diego (2021-07-22). "Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi Bonaparte, 1979 (Sauropoda: Cetiosauridae)". Geodiversitas. 43 (16). doi:10.5252/geodiversitas2021v43a16. ISSN 1280-9659. S2CID 237537773.
- ^ Li, Ning; Zhang, Xiaoqin; Ren, Xinxin; Li, Daqing; You, Hailu (2025). "A new eusauropod (Dinosauria, Sauropodomorpha) from the Middle Jurassic of Gansu, China". Scientific Reports. 15. doi:10.1038/s41598-025-03210-5.
- ^ a b Paul, Gregory S.; Larramendi, Asier (2023). "Body mass estimate of Bruhathkayosaurus and other fragmentary sauropod remains suggest the largest land animals were about as big as the greatest whales". Lethaia. 56 (2): 1–11. Bibcode:2023Letha..56..2.5P. doi:10.18261/let.56.2.5.
- ^ Sereno PC (1999). "The evolution of dinosaurs". Science. 284 (5423): 2137–2147. doi:10.1126/science.284.5423.2137. PMID 10381873.
- ^ Farlow JA (1993). "On the rareness of big, fierce animals: speculations about the body sizes, population densities, and geographic ranges of predatory mammals and large, carnivorous dinosaurs". In Dodson, Peter; Gingerich, Philip (eds.). Functional Morphology and Evolution. American Journal of Science, Special Volume. Vol. 293-A. pp. 167–199.
- ^ Peczkis, J. (1994). "Implications of body-mass estimates for dinosaurs". Journal of Vertebrate Paleontology. 14 (4): 520–33. doi:10.1080/02724634.1995.10011575.
- ^ "Anatomy and evolution". National Museum of Natural History. Archived from the original on 2007-11-11. Retrieved 2007-11-21.
- ^ Campione, Nicolás E.; Evans, David C. (2012). "A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods". BMC Biology. 10: 60. doi:10.1186/1741-7007-10-60. PMC 3403949. PMID 22781121.
- ^ Paul, Gregory (2019). "Determining the Largest Known Land Animal: A Critical Comparison of Differing Methods for Restoring the Volume and Mass of Extinct Animals". Annals of Carnegie Museum. 85 (4): 335. doi:10.2992/007.085.0403.
- ^ Gayford, Joel H.; Engelman, Russell K.; Sternes, Phillip C.; Itano, Wayne M.; Bazzi, Mohamad; Collareta, Alberto; Salas-Gismondi, Rodolfo; Shimada, Kenshu (2024). "Cautionary tales on the use of proxies to estimate body size and form of extinct animals". Ecology and Evolution. 14 (9). Bibcode:2024EcoEv..1470218G. doi:10.1002/ece3.70218.
- ^ Dempsey, Matthew; Maidment, Susannah C. R.; Hedrick, Brandon P.; Bates, Karl T. (2023). "Convergent evolution of quadrupedality in ornithischian dinosaurs was achieved through disparate forelimb muscle mechanics". Proceedings of the Royal Society B: Biological Sciences. 290 (1992). doi:10.1098/rspb.2022.2435. PMC 9890092. PMID 36722082.
- ^ Bates, Karl T.; Falkingham, Peter L.; MacAulay, Sophie; Brassey, Charlotte; Maidment, Susannah C. R. (2015). "Downsizing a giant: Re-evaluating Dreadnoughtus body mass". Biology Letters. 11 (6). doi:10.1098/rsbl.2015.0215. PMC 4528471. PMID 26063751.
- ^ Therrien, François; Henderson, Donald M. (2007). "My theropod is bigger than yours … or not: Estimating body size from skull length in theropods". Journal of Vertebrate Paleontology. 27: 108. doi:10.1671/0272-4634(2007)27[108:MTIBTY]2.0.CO;2. ISSN 0272-4634.