This is a test page for improving the Protist classification article.

15% completed (estimate)

   

Legend:

* Lack of molecular data.
Extinct, or exclusively fossil taxon.
? Uncertain position, reserved for above-genus taxa.
(P) Paraphyletic or polyphyletic taxon.
(P?) Potentially paraphyletic or polyphyletic taxon.
(=...) Taxonomic synonym.
(="...") Taxonomic synonym that is also a homonym of a different taxon.
(...) Same taxon in a different code of nomenclature.

Overview of classification

edit
Cladogram of eukaryotes showing the major protist groups, based on 2023–2025 phylogenetic analyses.

Eukarya

Amorphea

edit

The supergroup Amorphea contains very diverse heterotrophic organisms, from the macroscopic fungi and animals to the unicellular choanoflagellates and classical amoebae. They frequently exhibit the ability to produce multinucleated cells, a trait considered ancestral to Amorphea. They are also capable of producing pseudopodia, as does the closely related CRuMs clade, forming the clade Podiata.[1]

Amorphea is divided into two clades: Amoebozoa, containing well-known amoebae and slime molds, and Obazoa, containing animals, fungi, and their closest relatives. The relationship between these two clades was initially called 'Unikonta', due to a hypothesis where their common ancestor was a unikont, i.e., a eukaryote with just one flagellum.[2] However, this hypothesis was refuted, as there are bikont amorpheans (e.g., Breviata anathema) and it likely is not an ancestral trait to have a single flagellum.[3][4]

Amoebozoa

edit
Cladogram of the major groups of Amoebozoa based on an 824-gene phylogenetic analysis published in 2022.[5]

The phylum Amoebozoa contains around 2,400 species[6] of primarily amoeboid protists.[7] It includes a large portion of the traditional Sarcodina, the taxon uniting all amoebae. In particular, it groups naked and testate lobose amoebae (the traditional Lobosa), as well as the archamoebae and eumycetozoans (slime molds), and a few flagellates.[8] After the general 2019 revisions published by the International Society of Protistologists (ISOP),[7] there have been specific revisions to the classification of eumycetozoans[9] and testate amoebae.[10]

Phylum Amoebozoa Lühe 1913 sensu Cavalier-Smith 1998. Genera incertae sedis: Belonocystis, Boveella, Biomyxa, Corallomyxa, Gibbodiscus, Hartmannia, Malamoeba, Malpighamoeba, Oscillosignum, Pseudothecamoeba, Rhabdamoeba, Schoutedamoeba, Stereomyxa, Subulamoeba, Triaenamoeba, Unda.[7]

Obazoa

edit
Cladogram of Obazoa based on several analyses.[29][30][31]

The clade Obazoa contains two small groups of flagellates, the breviates and the apusomonads, and the large clade Opisthokonta, which contains animals, fungi, and their closest protist relatives.[7] Under the Cavalier-Smith system, breviates and apusomonads were two classes that composed the phylum Apusozoa,[32] but this taxon is paraphyletic, as apusomonads are more closely related to opisthokonts.[29] The taxonomy of apusomonads was expanded in a 2022 phylogenetic sudy that introduced many new genera.[33]

Obazoa Brown et al. 2013

Opisthokonta

edit

Opisthokonts are divided into two branches: Holozoa (animal-related), containing the ichthyosporeans, pluriformeans, filastereans and choanoflagellates; and Nucletmycea or Holomycota (fungus-related), containing the nucleariids and opisthosporidians. These groups, minus opisthosporidians, were classified as different classes within the paraphyletic phylum Choanozoa in the system of Cavalier-Smith, now obsolete. Instead, Choanozoa is the name used for the clade containing choanoflagellates and animals. Opisthosporidians (aphelids, rozellids and microsporidians) are often studied as protists, but are also considered fungi by protistologists[7] and mycologists alike.[27] Both Holozoa and Nucletmycea have been proposed once as superkingdoms by a group of mycologists, specifying nucleariids and fungi as kingdoms, but without any mention of holozoan kingdoms.[34]

Opisthokonta Cavalier-Smith 1987 emend. Adl et al. 2005

Archaeplastida

edit

The clade Archaeplastida encompasses photosynthetic eukaryotes whose chloroplasts are derived from an event of primary endosymbiosis with a cyanobacterium. This includes the multicellular land plants (embryophytes), distinguished by their embryonic development and differentiation into tissues, and a multitude of protist lineages, many of which have also evolved multicellularity independently (e.g., red algae). Together, they amount to an estimated 500,000 species, with protists covering less than 50,000. In some systems of classification, Archaeplastida is equivalent to the plant kingdom (Plantae).[32] As such, the protist lineages, including simple, single-celled algae and protozoa, are regarded as "plants" under this definition.[44] Other definitions exclude these protists, and reduce the plant kingdom to only embryophytes.[7]

Rhodophyta

edit
Cladogram showing the relationships between red algal classes, according to a 2017 phylogenomic analysis.[45]

The red algae, formally known as phylum Rhodophyta, are a group of more than 7,100 species of photosynthetic eukaryotes containing primary plastids. They have evolved into diverse morphologies, from single coccoid cells to large pseudoparenchymatous thalli that have complex life cycles with up to three generations.[46] Unlike other eukaryotes, they lack flagella and centrioles in all their life stages.[47]

Traditionally, red algae have been classified according to morphology as two classes (Bangiophyceae and Florideophyceae), or two subclasses (Bangiophycidae and Florideophycidae) of a single class Rhodophyceae. This system was challenged with the rise of molecular phylogenetics, which revealed the paraphyly of Bangiophyceae. In addition, a third class, Cyanidiophyceae, was discovered as the earliest diverging lineage. In 2004 a new molecular-based classification of red algae was proposed, where they composed a subkingdom of plants (Rhodoplantae) divided into two phyla: Cyanidiophyta, with just one class, and Rhodophyta, with three subphyla (Rhodellophytina, Metarhodophytina and Eurhodophytina) and four classes, one of which was still paraphyletic.[48] In 2006, a comprehensive molecular analysis revised the classification and proposed a single phylum Rhodophyta with two subphyla: Cyanidiophytina, with one class, and Rhodophytina, with six classes.[49] This taxonomic system, developed by Hwan Su Yoon and collaborators, is the prevalent among taxonomists,[50][46] with the addition of a separation of subphylum Rhodophytina into two subphyla Proteorhodophytina and Eurhodophytina in 2017.[45] In 2022, a book was published revising the classification of all freshwater red algae.[51]

Phylum Rhodophyta Wettstein 1901

Rhodelphidia

edit

Picozoa

edit

Glaucophyta

edit

Chloroplastida

edit
Cladogram of Chloroplastida with focus on the classes of green algae, based on 2019–2023 phylogenetic studies. Prasinophytes are marked *.[77][78][79]

The green algae are a paraphyletic group from which land plants (Embryophyta) evolved. Together they form the clade Chloroplastida (in reference to their green plastids), also known as Viridiplantae (meaning "green plants"). Green algae were originally studied as a single division Chlorophyta.

Prasinodermophyta

edit

Division Prasinodermophyta Marin & Melkonian in Li et al. 2020[78]

Chlorophyta

edit

Division Chlorophyta Reichenbach 1828 emend. Pascher 1914 emend. Lewis & McCourt 2004

Streptophyta

edit

Division Streptophyta Bremer & Wanntorp 1981 (=Charophyta Migula 1897 emend. Karol et al. 2009)

Pancryptista

edit
Cladogram of Pancryptista based on 2020 and 2022 analyses.[92][93]

The phylum Cryptista contains heterotrophic and photosynthetic single-celled flagellates. Its classification has undergone many changes through the years, and several conflicting systems and nomenclatures coexist. It was described by Thomas Cavalier-Smith in 1989 to unite two distinct groups of flagellates: the photosynthetic cryptomonads, and the heterotrophic goniomonads (respectively the two classes Cryptomonadea and Cyathomonadea). The name Cryptista was meant to be a synonym of Cryptophyta,[94] the algal division described by the same author in previous years.[95] In 2004, he modified the classification of Cryptista to add two subphyla: Cryptomonada, containing the aforementioned classes (renamed as Cryptophyceae and Goniomonadea respectively), and Leucocrypta, containing the heterotrophic katablepharids.[96] The next year, a separate group of authors proposed a different higher ranking for katablepharids as a phylum Kathablepharida or division Katablepharidophyta, related to but independent from phylum Cryptophyta, with no mention of Cryptista.[97] Between 2013 and 2015, Cavalier-Smith updated the classification once more by describing three new subphyla: Rollomonadia, containing the previous subphyla lowered to superclasses; Palpitia, containing the flagellate Palpitomonas bilix;[98] and Corbihelia, containing picozoans, telonemids, and some heliozoan species (Heliomorpha and Microheliella).[99] Corbihelia did not reach consensus: later analyses and revisions separated telonemids and picozoans as their own clades, and placed Heliomorpha in Cercozoa.[7] However, the addition of Palpitomonas and the monophyly of Rollomonadia have been supported in other analyses.[92]

Cryptista was redefined in the 2019 ISOP revision as the clade containing Palpitomonas, katablepharids, goniomonads and cryptomonads. However, this revision introduced yet another classification system that is contradictory with the previous ones. They proposed a single class Cryptophyceae uniting cryptomonads, goniomonads and katablepharids, and treated cryptomonads as a single order Cryptomonadales,[7] although this does not follow scientific consensus: there are more cryptomonad orders (e.g., Pyrenomonadales, Tetragonidiales) and the name Cryptophyceae was already used for taxa that excluded katablepharids[100] and often excluded goniomonads too.[99] There has not been a new revision since.

Unlike with Heliomorpha, the genus Microheliella was genetically sequenced and its affinities have been resolved. In 2022, it was proposed as the sister group of Cryptista, in a clade known as Pancryptista.[93]

Pancryptista Yazaki et al. 2022

Haptista

edit

Alveolata

edit

Ciliophora

edit

Myzozoa

edit

Chrompodellids

edit

Apicomplexa

edit

Perkinsozoa

edit

Dinoflagellata

edit

Rhizaria

edit

Cercozoa

edit

Endomyxa

edit

Foraminifera

edit

Globothalamea

Xenophyophorea

'monothalamids'

'monothalamids'

Tubothalamea

'monothalamids'

Cladogram of foraminifera based on a 2022 phylogenetic analysis.[104]

The foraminifera, or forams, are a diverse group of single-celled aquatic amoebae, usually bearing an organic or calcareous wall, amounting to over 6,700 living species and many fossil taxa.[105] They were originally classified as an order of protozoa (Foraminiferida) belonging to the now obsolete Granoreticulosa, along with other reticulose amoebae. Later they were separated into their own phylum by most protozoologists, although maintained as a class by micropaleontologists,[106] until they were placed as a subphylum of phylum Retaria along with the Radiolaria.[101] They are divided into three classes (or subclasses, when globally treated as a class): the paraphyletic monothalamids,[107] containing amoebae with single-chambered organic walls and a few naked amoebae (e.g., the large xenophyophores); and the monophyletic Globothalamea and Tubothalamea, which evolved from monothalamids, each containing amoebae with multi-chambered tests, either organic or calcareous.[104] Some alternate systems of dividing foraminifera into classes have been proposed,[108] but none have gained consensus. The relationships of monothalamids remain a work in progress due to the limited amount of genetic data.[104]

Foraminiferal classification was compiled numerous times through the 20th century, culminating in 1987 with the catalogue of foraminiferal genera published by paleontologists Alfred R. Loeblich Jr and Helen Tappan.[109] Later, catalogues have been published individually for separate groups of foraminifera on the basis of morphology and ecology. Two classifications for exclusively agglutinated (organic-walled) foraminiferal genera were published in 2001[106] and 2014,[110] and one classification for planktonic foraminifera was published in 2022.[111]

Subphylum Foraminifera d'Orbigny 1826

Radiolaria

edit

Subphylum Radiolaria Müller 1858 sensu Adl et al. 2005

Stramenopiles

edit
Cladogram of stramenopiles, based on 2022–2024 phylogenomic analyses.[126][127]

The stramenopiles are a diverse group of protists composed of more than 100,000 estimated species.[128] They are generally biflagellates, characterized by straw-like tubular flagellar hairs in one of their flagellum; this is referenced in their name (Latin stramen, 'made of straw').[129] They are also known as heterokonts due to their unequal flagella, as only one of them has hairs.[130] The formal taxonomic name Heterokonta was originally proposed by Cavalier-Smith as a small phylum of algae (namely the chrysophytes, xanthophytes, phaeophytes and raphidophytes).[131] Its definition became progressively wider to include diatoms, eustigmatophytes, and non-algal groups like the oomycetes,[132] and it became a superphylum within his kingdom Chromista.[101] Simultaneously, the name 'stramenopile' was coined by David Patterson for the same group of organisms[133] and reached wide usage in the scientific community, as it was more descriptive of their characteristic flagella,[129][7] while the term 'heterokont' could also refer to any protist with flagella of unequal size (e.g., euglenids, jakobids).[134] In the 2005 ISOP revision of protist classification, the term was formalized as a taxon with a phylogenetic definition and was capitalized as 'Stramenopiles'.[129] Variants of this name have been proposed in different ranked systems, such as kingdom 'Straminipila'.[135][136]

Most stramenopiles are classified into two phyla: Bigyra, containing the earliest-branching heterotrophs, and Gyrista, containing the photosynthetic stramenopiles (Ochrophyta) and some of their heterotrophic relatives, like oomycetes. Bigyra is further divided into two subphyla: Sagenista, containing the labyrinthulids, and Opalozoa, containing the bicosoecids, opalinids. In addition, the earliest branching stramenopile, Platysulcus tardus, has been proposed as incertae sedis Bigyra.[101] However, most taxonomists exclude Platysulcus from this phylum.[7][137] Another basal stramenopile, Kaonashia, was described without explicit assignment to any taxon within stramenopiles.[138]

Stramenopiles Patterson 1989 emend. Adl et al. 2005 (=Heterokonta Cavalier-Smith 1986; Straminipila Dick 2001)

Bigyra

edit

Bigyra was initially proposed as a phylum of heterotrophic protists closely related to the photosynthetic heterokonts (Ochrophyta). It contained three subphyla: Pseudofungi (oomycetes and hyphochytrids), Bigyromonada (free-living biflagellates), and Opalinata (large multi-flagellated gut symbionts). The phylum was proposed with a unifying characteristic, the presence of a flagellar transition zone with double helices or rings. This definition was later modified to exclude both Pseudofungi and Bigyromonada, and it was instead reduced to two different subphyla: Opalozoa (including Opalinata and bicosoecids) and Sagenista. Prior to this, Sagenista itself was also a phylum containing bicosoecids and labyrinthuleans, but it got reduced to only labyrinthuleans and a few flagellates.[139][101]

The current definition of Bigyra is paraphyletic according to some phylogenetic analyses, with Sagenista more closely related to Gyrista. Despite its probable paraphyly, most taxonomists continue to use it, and it was recognized in the 2019 revision by the ISOP, which prioritizes monophyletic taxa.[7][126][127] Its global classification was last revised by Cavalier-Smith in 2013 and 2018,[98][101] while the specific class Placididea was revised in 2021, with new taxa described by Alexandra Rybarski and coauthors,[140] and the classes Labyrinthulea and Opalinea were revised in-depth in the 2017 Handbook of the protists.[141][142]

Phylum Bigyra(P?) Cavalier-Smith 1998 emend. 2013

Bigyromonada

edit

Subphylum Bigyromonada Cavalier-Smith 1998

Pseudofungi

edit

The pseudofungi are a group of over 1,200 species[148] of fungus-like protists, composed of two groups: the hyphochytrids and oomycetes. Both groups have been traditionally studied by mycologists and regarded as phylum-level taxa, Hyphochytriomycota and Oomycota (or Peronosporomycota), inside the kingdom Straminipila.[135][136] Some protistologists place them as classes of the phylum or subphylum Pseudofungi instead.[101] Due to their similarity to fungi, they (and labyrinthuleans) are also known as 'straminipilous fungi'.[135] Their classifications were reviewed in the 2017 work Handbook of the protists. The taxonomy of oomycetes is provisional, as molecular phylogenetics are still resolving the inner relationships.[149][7]

Subphylum Pseudofungi Cavalier-Smith 1986 (=Heterokontimycotina M.W. Dick 1976, Peronosporomycotina M.W.Dick 2001;[135]: 288  Pythiista Cavalier-Smith 1986)[132]

Ochrophyta

edit
Evolutionary relationships between all ochrophyte classes, based on a 2024 multiprotein phylogenetic analysis.[151]

The ochrophytes (also known as heterokontophytes or heterokont algae) are a vast group of mostly photosynthetic stramenopiles.[152] The first phylum name introduced specifically for heterokont algae was Heterokontophyta, coined by van den Hoek in 1978 and subsequently used by several authors,[153] but it was not validly published until 2023.[154] Meanwhile, T. Cavalier-Smith coined in 1986 the alternative name Ochrista, renamed Ochrophyta in 1996 to match the recommendations of the International Code of Botanical Nomenclature.[153] The same author later renamed it Ochrophytina after making it a subphylum of phylum Gyrista,[101] but the scientific community continues to study heterokont algae as a phylum Ochrophyta or Heterokontophyta.[7][152]

The numerous classes of ochrophytes are currently organized into two major clades: Chrysista, containing the clades SI and SII, and Diatomista, equivalent to the clade SIII. However, the exact relationships of ochrophyte classes within these smaller clades continue to be debated.[152]

Subphylum/Phylum Ochrophyta Cavalier-Smith 1986 emend. Cavalier-Smith & Chao 1996 (=Heterokontophyta Guiry, R.A.Andersen & Moestrup 2023). Genera incertae sedis: Commation,[m] Chrysoderma*, Chrysomeris*, Chrysonephos*, "Giraudyopsis",[157] Rhamnochrysis*.[n]

Diatoms

edit

The diatoms (clade Diatomeae)[7] are a particularly species-rich group of stramenopiles, with more than 14,000 described species.[196] They are often classified as an entire phylum or division Bacillariophyta by diatomists, despite being part of the phylum Ochrophyta.[197] Taxonomists divide diatoms into three main classes: Coscinodiscophyceae, for radial centric diatoms; Mediophyceae, for polar centric diatoms; and Bacillariophyceae, for pennate diatoms.[198] However, the current class- and order-level classifications do not reflect molecular phylogenetics: most classes and many orders are non-monophyletic, and some orders are spread between different classes.[199][200] The ISOP publication of 2019 proposed a newer preliminary classification with higher ranks to reflect the advances in phylogenetics of the 2010s decade, although it still suffers from poor taxon sampling outside of the polar centric and pennate diatoms, and expects the basal taxa to become better resolved in the future.[7]

Diatomeae Dumortier 1821 (=Bacillariae Haeckel 1878, Bacillariophyta Karsten 1928)

Excavates

edit

Malawimonada

edit

Metamonada

edit

The metamonads were first described by Pierre-Paul Grassé in the first volume of Traité de Zoologie, published in 1952, as the superorder Metamonadina or Anaxostylaria. They were originally composed of zooflagellates with four or more flagella, known as polymastigotes and hypermastigotes (e.g., Trichomonas, Oxymonas).[203] These were later split into other groups such as the Parabasalia and Preaxostyla (over 260 and 140 species respectively),[204][205] regarded as individual phyla. After rRNA phylogenetic analyses demonstrated their relatedness, the concept of metamonads was reintroduced by Cavalier-Smith as a monophyletic phylum Metamonada that includes both groups, as well as the anaerobic Fornicata (e.g., the free-living Carpediemonas and the parasitic Giardia;[206][207] around 140 species).[204] In this system, Preaxostyla is known as subphylum Anaeromonada, and Fornicata and Parabasalia are two infraphyla that belong to the subphylum Trichozoa.[32] Still, some taxonomists retain the Parabasalia at a phylum level.[208]

The classifications of Preaxostyla and Fornicata were last revised separately in the 2017 Handbook of the protists[209][210][211] and the higher classification of Metamonada was revised by Cavalier-Smith in 2021.[32] The classification of Parabasalia was completely updated in 2024.[208] Two new smaller clades of metamonads have been described in addition: anaeramoebae[212] and the 'BaSk' clade, containing barthelonids and skoliomonads.[213] However, Parabasalia was treated as a separate phylum by the 2024 revision, instead of a member of phylum Metamonada.[208] For consistency, the classification listed below maintains Parabasalia as part of the phylum Metamonada.

Phylum Metamonada Grassé 1952 emend. Cavalier-Smith 2003

Discoba

edit

Jakobida

edit

Heterolobosea

edit
Cladogram of heterolobosean orders based on combined phylogenomic and 18S rRNA analyses published in 2025.[218]

The phylum Heterolobosea contains around 170 species of amoebae, flagellates, and amoeboflagellates. It was initially established to unite two historically well-known amoeboid orders, Schizopyrenida (such as Naegleria fowleri, a human pathogen) and Acrasida (slime molds). Later, as more flagellates joined this grouping, the usage of Heterolobosea was split between two meanings: the more common usage applies to the entire clade,[7] while the usage by Cavalier-Smith and collaborators was restricted to a paraphyletic class of "traditional" heteroloboseans, with the name Percolozoa used for the phylum instead.[219][220] The first comprehensive phylogenomic study of Heterolobosea was published in 2025 by Tomáš Pánek and coauthors, resulting in its modern classification.[218]

Phylum Heterolobosea Page & Blanton 1985 sensu Hanousková et al. 2019 (=Percolozoa Cavalier-Smith 1991)

Euglenozoa

edit

The phylum Euglenozoa is home to at least 2,000 described species of single-celled flagellates of very dissimilar lifestyles. It was originally proposed to group the euglenids (such as the photosynthetic Euglena) and the kinetoplastids (like the pathogenic Trypanosoma), usually studied separatedly; eventually it included diplonemids and symbiontids as well.[221][222][223] Due to its share of photosynthetic species, traditionally regarded as algae, the phylum is also known as Euglenophyta by phycologists, and euglenids in particular were often studied as algae. Euglenids and kinetoplastids are the most diverse in terms of described species, although diplonemids may compose over 67,000 potential species.[223] The classification of euglenozoans was summarized by Cavalier-Smith in 2016.[222] A more phylogenetically precise revision of their classification was published in 2021 by Alexei Kostygov and coauthors,[223] with newer clades and genera described in the following years, particularly of euglenids. Still, one group of euglenids, the paraphyletic "ploeotids",[224] remains unresolved in the current classification, spread out across multiple clades.[225][226][227]

Phylum Euglenozoa Cavalier-Smith 1981 emend. Simpson 1997

Minor clades

edit

Ancyromonadida

edit

CRuMs

edit

Hemimastigophora

edit

Provora

edit

Telonemia

edit

The phylum Telonemia (telonemids) contains a few species of flagellates found in ocean and fresh waters worldwide. It was originally proposed in 2006 for Telonema, a genus of previously uncertain affinity.[236] Under the Cavalier-Smith system, telonemids were initially classified as a class of Cryptista,[99] but later analyses consistently recovered it as a separate group.[32] Until 2019, only two species had been formally described, each belonging to a separate genus,[237] although environmental DNA sequencing suggests there are many more species not yet described.[238] In 2022, five additional species were described along with a third new genus, bringing the total number of species to seven.[239]

Phylum Telonemia Shalchian-Tabrizi 2006, class Telonemea Cavalier-Smith 1993, order Telonemida Cavalier-Smith 1993, family Telonemidae Cavalier-Smith 1993, genera Arpakorses, Lateronema, Telonema.

Protists of uncertain position

edit

Notes

edit
  1. ^ The position of the genera Microcorycia, Parmulina, Penardochlamys and Zonomyxa, which were listed in 2002 under family Microcoryciidae, is not clear. They are placed here by morphological characters but this needs to be supported by molecular data.[7]
  2. ^ This genus grouped with Dermamoebidae in a phylogenetic anaysis that used a limited number of taxa.[18] In the recent taxonomy it was listed as a separate clade until its position was better resolved.[7] A 2023 analysis placed it, once again, related to Dermamoebida in a clade with Microglomus.[19]
  3. ^ The two genera of Stygamoebidae, Stygamoeba and Vermistella, group together in some phylogenetic analyses, but usually appear separated. In 2019 they were considered only a potential branch of Discosea, unless proven otherwise.[7] A 2023 analysis places both genera in Flabellinia, closely related to Thecamoebida.[19]
  4. ^ a b c d e The orders Thecamoebida, Dactylopodida, Acanthopodida, Himatismenida and Pellitida were initially divided into families, but phylogenetic analyses haven't supported the monophyly of each family. For this reason, in recent classifications there is no family rank division within it.[11][7]
  5. ^ The genus Pessonella could be a synonym of Vannella.[7]
  6. ^ The 2019 revision by the ISOP ignores the grouping of some variosean genera into higher rank clades (orders and families) proposed in older studies, due to the weakly supported SSU rRNA phylogenetic analyses.[7]
  7. ^ a b According to a 2018 molecular study: "The genera Coriophyllum, Neohalosacciocolax and Pseudorhododiscus are currently assigned to the Palmariales but have yet to be included in a molecular phylogenetic context, and their associations within the Palmariales remain equivocal."[68]
  8. ^ The 2019 revision by the ISOP wrongly stated that goniomonads are classified as "Cyathomonadacea Pringsheim 1944".[7] The name Cyathomonadacea does not exist; Pringsheim only described the family Cyathomonadaceae based on the genus Cyathomonas, and later the order Cyathomonadales and class Cyathomonadea were described, each by different authors. However, as pointed out in 1993 by Gianfranco Novarino and Ian Lucas, this genus was based on a species that actually belonged to Goniomonas; since then, taxonomists have prioritized higher taxa named after it (Goniomonadaceae, Goniomonadales/adida, Goniomonadea) instead.[100]
  9. ^ The genus Tetragonidium is known only from one written diagnosis and some illustrations, and its affinities with cryptomonads are very uncertain.[100]
  10. ^ According to Nakamura & Suzuki, the only extant (i.e. not extinct) orders of Polycystinea are Spumellaria, Nassellaria, Collodaria and Orodaria. Therefore, Entactinaria is considered an exclusively fossil group.[123]
  11. ^ Within the order Anoecida, the four families Anoecaceae, Caecitellaceae, Cafeteriaceae and Symbiomonadaceae were included by T. Cavalier-Smith in 2006. In a 2013 revision, he simplified the classification by transferring Symbiomonadaceae and Anoecaceae to Cafeteriaceae.[98] However, both of those families remain accepted by the scientific community as independent from Cafeteriaceae as of 2020.[143]
  12. ^ In the Handbook of the protists, taxonomists Gordon Beakes and Marco Thines assume oomycetes are a phylum-level taxon (Oomycota), and raise the subclasses Saprolegniomycetidae and Peronosporomycetidae to classes Saprolegniomycetes and Peronosporomycetes, respectively.[149] However, most taxonomists treat the oomycetes as a class-level taxon, as represented here.[101][7]
  13. ^ a b Cavalier-Smith hypothesized in 2013 a sister relationship between actinophryids and raphidophytes, with both groups placed under the taxon Raphidomonadea. The molecularly uncharacterized genus Commation was classified as part of this taxon. [98] However, the placement of actinophryids among ochrophytes is still unstable and uncertain,[155][156] and Commation has never been included in classifications since.[7]
  14. ^ The eight genera Antarctosaccion, Chrysoderma, Chrysomeris, Chrysonephos, Chrysowaernella, Giraudyopsis, Phaeosaccion and Rhamnochrysis were initially considered golden algae (class Chrysophyceae). In 1989, Charles O'Kelly claimed they had been classified in a new order Chrysomeridales according to an unpublished article.[158][159] Later, Thomas Cavalier-Smith placed this unpublished order inside the class Chrysomeridophyceae.[160] However, the class was proven to be polyphyletic: Chrysowaerella was transferred to Chrysoparadoxophyceae, while Antarctosaccion and Phaeosaccion were moved to Phaeosacciophyceae. Due to unavailable molecular data, the placement of Chrysoderma, Chrysomeris, Chrysonephos and Rhamnochrysis remains unknown,[161] although Chrysonephos possibly belongs to the Sarcinochrysidales.[162][163]
  15. ^ The position of Eustigmatophyceae is still unstable, with different phylogenetic methodologies showing affinities to either of the SI and SII clades.[165][156]
  16. ^ In Syllabus of plant families (2015),[174]: 126  the chrysophyte family Chrysosphaeraceae (containing the genera Chrysosphaera, Chrysastrella and Epicystis) is considered incertae sedis with no assigned order. Later publications place this family (or at least its genera) within the order Chrysosaccales,[175][176] but maintain one of its genera, Chrysastrella, as incertae sedis among chrysophytes.[170]
  17. ^ According to the Syllabus of plant families (2015), the order Ochromonadales contains three families, Chrysolepidomonadaceae, Dinobryaceae, and Ochromonadaceae. However, these are not monophyletic,[174]: 122–123  and many phylogenetic studies of the following years have abandoned the use of families.[7][178][169][179]
  18. ^ Some authors consider Ciliophryales and Rhizochromulinales to be separate orders.[192]
  19. ^ Although formally recognized as a genus of Sarcinochrysidales, Ankylochrysis groups with Pelagomonadales in phylogenetic analysis.[193]
  20. ^ One 18S rRNA phylogenetic analysis suggests that the genus Opisthomitus is affiliated with the family Pyrsonymphidae.[209]
  21. ^ Regarding the classification of Fornicata, there is a disconnect between the Cavalier-Smith system and the system described by different authors in the Handbook of the protists and other studies. The order Retortamonadida was originally defined as two genera: Chilomastix and Retortamonas. As both groups of taxonomists have reported, retortamonads are polyphyletic, because Chilomastix branches distantly from Retortamonas. In 2013, Cavalier-Smith fixed this taxonomic issue by modifying the retortamonads to only include Retortamonas, and describing a separate order Chilomastigida for Chilomastix only, placed among the early branching Carpediemonas-like organisms.[214] However, this has not yet been recognized by later studies from the other authors, as they have continued to report a polyphyletic Retortamonadida.[211][215][216] Because of this inconsistency, Eopharyngea (the clade formed by Retortamonadida plus Diplomonadida) is monophyletic only when considering one version of Retortamonadida, but not the other.
  22. ^ The family Orodruinidae is possibly polyphyletic, and its type genus Orodruina may belong to the order Neovahlkampfiida.[218]

References

edit
  1. ^ Torruella, Guifré; Galindo, Luis Javier; Moreira, David; López-García, Purificación (2025). "Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life". Current Biology. 35 (1): 198–207.e4. doi:10.1016/j.cub.2024.10.075.
  2. ^ Spiegel, F.W. (2016). "Unikonts, Evolution and Diversification of (with Emphasis on Fungal-Like Forms)". Encyclopedia of Evolutionary Biology. Elsevier. p. 325–332. doi:10.1016/b978-0-12-800049-6.00248-1. ISBN 978-0-12-800426-5. Retrieved 12 May 2025.
  3. ^ Roger, Andrew J.; Simpson, Alastair G.B. (2009). "Evolution: Revisiting the Root of the Eukaryote Tree". Current Biology. 19 (4): R165 – R167. doi:10.1016/j.cub.2008.12.032.
  4. ^ Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; et al. (28 September 2012). "The Revised Classification of Eukaryotes". The Journal of Eukaryotic Microbiology. 59 (2): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. PMC 3483872. PMID 23020233.
  5. ^ Tekle, Yonas I.; Wang, Fang; Wood, Fiona C.; Anderson, O. Roger; Smirnov, Alexey (1 July 2022). "New insights on the evolutionary relationships between the major lineages of Amoebozoa". Scientific Reports. 12 (11173) 11173. Bibcode:2022NatSR..1211173T. doi:10.1038/s41598-022-15372-7. PMC 9249873. PMID 35778543. S2CID 247231712.
  6. ^ Pawlowski, Jan; Audic, Stéphane; Adl, Sina; Bass, David; Belbahri, Lassaâd; et al. (6 November 2012). "CBOL Protist Working Group: Barcoding Eukaryotic Richness beyond the Animal, Plant, and Fungal Kingdoms". PLoS Biology. 10 (11): e1001419. doi:10.1371/journal.pbio.1001419. ISSN 1545-7885. PMC 3491025. PMID 23139639.
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; et al. (26 September 2018). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". The Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/JEU.12691. PMC 6492006. PMID 30257078.
  8. ^ Pawlowski, Jan; Burki, Fabien (24 March 2009). "Untangling the Phylogeny of Amoeboid Protists". The Journal of Eukaryotic Microbiology. 56 (1): 16–25. doi:10.1111/j.1550-7408.2008.00379.x. PMID 19335771.
  9. ^ a b c Leontyev, Dmitry V; Schnittler, Martin; Stephenson, Steven L; Novozhilov, Yuri K; Shchepin, Oleg N (March 2019). "Towards a phylogenetic classification of the Myxomycetes". Phytotaxa. 399 (3): 209. Bibcode:2019Phytx.399..209L. doi:10.11646/phytotaxa.399.3.5. S2CID 108783142.
  10. ^ a b González-Miguéns, Rubén; Todorov, Milcho; Blandenier, Quentin; Duckert, Clément; Porfirio-Sousa, Alfredo L.; et al. (2022). "Deconstructing Difflugia: The tangled evolution of lobose testate amoebae shells (Amoebozoa: Arcellinida) illustrates the importance of convergent evolution in protist phylogeny". Molecular Phylogenetics and Evolution. 175 107557. doi:10.1016/j.ympev.2022.107557. hdl:10261/281619. PMID 35777650.
  11. ^ a b c Kang, Seungho; Tice, Alexander K; Spiegel, Frederick W; Silberman, Jeffrey D; Pánek, Tomáš; et al. (15 May 2017). "Between a Pod and a Hard Test: The Deep Evolution of Amoebae". Molecular Biology and Evolution. 34 (9): 2258–2270. doi:10.1093/molbev/msx162. PMC 5850466. PMID 28505375.
  12. ^ a b Smirnov, Alexey; Nassonova, Elena; Geisen, Stefan; Bonkowski, Michael; Kudryavtsev, Alexander; et al. (2017). "Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida)". Protist. 168 (2): 220–252. doi:10.1016/j.protis.2016.10.006. ISSN 1434-4610. PMID 28343121.
  13. ^ Tyml, Tomáš; Lisnerová, Martina; Kostka, Martin; Dyková, Iva (2018). "Current view on phylogeny within the genus Flabellula Schaeffer, 1926 (Amoebozoa: Leptomyxida)". European Journal of Protistology. 64: 40–53. doi:10.1016/j.ejop.2018.03.005. PMID 29674177.
  14. ^ Vašíček, Miloslav; Růžička, Bohuslav (1957). "Namurian Thecamoebina from the Ostrava-Karviná Coal District". Acta Musei Nationalis Pragae. 13B (5): 333–340.
  15. ^ Wang K, Xu HH, Liu BC, Bai J, Wang Y, Tang P, Lu JF, Wang Y (2023). "Shallow-marine testate amoebae with internal structures from the Lower Devonian of China". iScience. 26 (5) 106678. Bibcode:2023iSci...26j6678W. doi:10.1016/j.isci.2023.106678. PMC 10173733. PMID 37182111.
  16. ^ Bobrov, Anatoly; Mazei, Yuri (2017). "A review of testate amoeba genus Cryptodifflugia Penard, 1890 (Phryganellina: Cryptodifflugiidae) with a key to species". Zootaxa. 4282 (2): 292–308. doi:10.11646/zootaxa.4282.2.4.
  17. ^ Bobrov A, Mazei Y (2020). "Frenopyxis stierlitzi gen. nov., sp. nov.—new testate amoeba (Amoebozoa: Arcellinida) from the urban parks with notes on the systematics of the family Centropyxidae Jung, 1942". Zootaxa. 4885 (3): 384–394. doi:10.11646/zootaxa.4885.3.4. PMID 33311269.
  18. ^ Blandenier, Quentin; Seppey, Christophe V. W.; Singer, David; Vlimant, Michèle; Simon, Anaële; et al. (20 August 2016). "Mycamoeba gemmipara nov. gen., nov. sp., the First Cultured Member of the Environmental Dermamoebidae Clade LKM74 and its Unusual Life Cycle" (PDF). Journal of Eukaryotic Microbiology. 64 (2): 257–265. doi:10.1111/jeu.12357. PMID 27543384. S2CID 4665573.
  19. ^ a b Tice, Alexander K.; Spiegel, Frederick W.; Brown, Matthew W. (2023). "Phylogenetic placement of the protosteloid amoeba Microglomus paxillus identifies another case of sporocarpic fruiting in Discosea (Amoebozoa)". Journal of Eukaryotic Microbiology. 70 (4): e12971. doi:10.1111/jeu.12971. PMID 36825799.
  20. ^ a b Kudryavtsev, Alexander; Voytinsky, Fyodor; Volkova, Ekaterina (22 July 2022). "Coronamoeba villafranca gen. nov. sp. nov. (Amoebozoa, Dermamoebida) challenges the correlation of morphology and phylogeny in Amoebozoa". Scientific Reports. 12 (1): 12541. Bibcode:2022NatSR..1212541K. doi:10.1038/s41598-022-16721-2. PMC 9307759. PMID 35869259.
  21. ^ Melton, James T.; Wood, Fiona C.; Branch, Jordan; Singla, Mandakini; Tekle, Yonas I. (February 2019). "Phylogenomics of Thecamoebida (Discosea, Amoebozoa) with the Description of Stratorugosa tubuloviscum gen. nov. sp. nov., a Freshwater Amoeba with a Perinuclear MTOC". Protist. 170 (1): 8–20. doi:10.1016/j.protis.2018.09.002. ISSN 1434-4610. PMID 30553127. S2CID 56174714.
  22. ^ Mesentsev, Yelisei; Bondarenko, Natalya; Kamyshatskaya, Oksana; Nassonova, Elena; Glotova, Anna; et al. (17 August 2022). "Thecochaos is not a myth: study of the genus Thecochaos (Amoebozoa, Discosea) – a rediscovered group of lobose amoeba, with short SSU gene". Organisms Diversity & Evolution. 23 (1): 7–24. Bibcode:2023ODivE..23....7M. doi:10.1007/s13127-022-00581-9. S2CID 251658030.
  23. ^ Tice, Alexander K.; Shadwick, Lora L.; Fiore-Donno, Anna Maria; Geisen, Stefan; Kang, Seungho; et al. (28 December 2016). "Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group". Biology Direct. 11 (1): 69. doi:10.1186/s13062-016-0171-0. ISSN 1745-6150. PMC 5192571. PMID 28031045.
  24. ^ Hess S, Eme L, Roger AJ, Simpson AG (2019). "A natural toroidal microswimmer with a rotary eukaryotic flagellum". Nature Microbiology. 4 (10): 1620–1626. doi:10.1038/s41564-019-0478-6. PMID 31182800. S2CID 182951779.
  25. ^ Pánek, Tomáš; Zadrobílková, Eliška; Walker, Giselle; Brown, Matthew W.; Gentekaki, Eleni; et al. (2016). "First multigene analysis of Archamoebae (Amoebozoa: Conosa) robustly reveals its phylogeny and shows that Entamoebidae represents a deep lineage of the group". Molecular Phylogenetics and Evolution. 98: 41–51. doi:10.1016/j.ympev.2016.01.011.
  26. ^ Sheikh, Sanea; Thulin, Mats; Cavender, James C.; Escalante, Ricardo; Kawakami, Shin-Ichi; Lado, Carlos; Landolt, John C.; Nanjundiah, Vidyanand; Queller, David C.; Strassmann, Joan E.; Spiegel, Frederick W.; Stephenson, Steven L.; Vadell, Eduardo M.; Baldauf, Sandra L. (February 2018). "A New Classification of the Dictyostelids". Protist. 169 (1): 1–28. doi:10.1016/j.protis.2017.11.001. PMID 29367151.
  27. ^ a b Wijayawardene, N.N.; Hyde, K.D.; Dai, D.Q.; Sánchez-García, M.; Goto, B.T.; et al. (2022). "Outline of Fungi and fungus-like taxa – 2021". Mycosphere. 13 (1): 53–453. doi:10.5943/mycosphere/13/1/2. S2CID 249054641.
  28. ^ Lloyd, Sarah J.; Leontyev, Dmytro V.; Moreno, Gabriel; Villalba, Ángela López; Schnittler, Martin (30 Nov 2023). "Tasmaniomyxa umbilicata, a new genus and new species of myxomycete from Tasmania". Mycologia. 116 (1): 170–183. doi:10.1080/00275514.2023.2274252. PMID 38032605. S2CID 265504848.
  29. ^ a b Brown, Matthew W.; Sharpe, Susan C.; Silberman, Jeffrey D.; Heiss, Aaron A.; Lang, B. Franz; et al. (22 October 2013). "Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads". Proceedings of the Royal Society B: Biological Sciences. 280 (1769): 20131755. doi:10.1098/rspb.2013.1755. ISSN 0962-8452. PMC 3768317. PMID 23986111.
  30. ^ a b Tikhonenkov, Denis V.; Mikhailov, Kirill V.; Hehenberger, Elisabeth; Karpov, Sergei A.; Prokina, Kristina I.; et al. (2020). "New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals". Current Biology. 30 (22): 4500–4509.e5. Bibcode:2020CBio...30E4500T. doi:10.1016/J.CUB.2020.08.061. PMID 32976804.
  31. ^ Galindo LJ, Torruella G, López-García P, Ciobanu M, Gutiérrez-Preciado A, Karpov SA, Moreira D (2023). "Phylogenomics supports the monophyly of aphelids and fungi and identifies new molecular synapomorphies". Systematic Biology. 72 (3): 505–515. doi:10.1093/sysbio/syac054. PMID 35900180.
  32. ^ a b c d e f g Cavalier-Smith, Thomas (23 December 2021). "Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi". Protoplasma. 259 (3): 487–593. doi:10.1007/s00709-021-01665-7. PMC 9010356. PMID 34940909.
  33. ^ Torruella, Guifré; Galindo, Luis Javier; Moreira, David; Ciobanu, Maria; Heiss, Aaron A.; Yubuki, Naoji; Kim, Eunsoo; López‐García, Purificación (2023). "Expanding the molecular and morphological diversity of Apusomonadida, a deep‐branching group of gliding bacterivorous protists" (PDF). Journal of Eukaryotic Microbiology. 70 (2): e12956. doi:10.1111/jeu.12956. ISSN 1066-5234. Retrieved 28 July 2025.
  34. ^ Tedersoo, Leho; Sánchez-Ramírez, Santiago; Kõljalg, Urmas; Bahram, Mohammad; Döring, Markus; et al. (2018). "High-level classification of the Fungi and a tool for evolutionary ecological analyses". Fungal Diversity. 90 (1): 135–159. doi:10.1007/s13225-018-0401-0. ISSN 1560-2745.
  35. ^ Gabaldón T, Völcker E, Torruella G (2022). "On the Biology, Diversity and Evolution of Nucleariid Amoebae (Amorphea, Obazoa, Opisthokonta". Protist. 173 (4) 125895. doi:10.1016/j.protis.2022.125895. hdl:2117/369912. PMID 35841659. S2CID 249827842.
  36. ^ Strother, Paul K.; Brasier, Martin D.; Wacey, David; Timpe, Leslie; Saunders, Martin; Wellman, Charles H. (2021). "A possible billion-year-old holozoan with differentiated multicellularity". Current Biology. 31 (12): 2658–2665.e2. Bibcode:2021CBio...31E2658S. doi:10.1016/J.CUB.2021.03.051. PMID 33852871.
  37. ^ Borteiro, Claudio; Baldo, Diego; Maronna, Maximiliano Manuel; Ubilla (2018). "Amphibian parasites of the Order Dermocystida (Ichthyosporea): current knowledge, taxonomic review and new records from Brazil". Zootaxa. 4461 (4): 499–518. doi:10.11646/zootaxa.4461.4.3. hdl:11336/84098. PMID 30314064. S2CID 52977120.
  38. ^ Urrutia A, Mitsi K, Foster R, Ross S, Carr M, Ward GM, et al. (2022). "Txikispora philomaios n. sp., n. g., a micro-eukaryotic pathogen of amphipods, reveals parasitism and hidden diversity in Class Filasterea". Journal of Eukaryotic Microbiology. 69 (2): e12875. doi:10.1111/jeu.12875. PMID 34726818. S2CID 240422937.
  39. ^ Nitsche, F.; Carr, M.; Arndt, H.; Leadbeater, B.S.C. (2011). "Higher Level Taxonomy and Molecular Phylogenetics of the Choanoflagellatea". Journal of Eukaryotic Microbiology. 58 (5): 452–462. doi:10.1111/j.1550-7408.2011.00572.x. PMID 21895836.
  40. ^ Carr M, Richter DJ, Fozouni P, Smith TJ, Jeuck A, Leadbeater BSC, Nitsche F (2017). "A six-gene phylogeny provides new insights into choanoflagellate evolution". Molecular Phylogenetics and Evolution. 107: 166–178. Bibcode:2017MolPE.107..166C. doi:10.1016/j.ympev.2016.10.011. PMID 27765632.
  41. ^ Hake KH, West PT, McDonald K, Laundon D, Reyes-Rivera J, Garcia De Las Bayonas A, Feng C, Burkhardt P, Richter DJ, Banfield JF, King N (14 August 2024). "A large colonial choanoflagellate from Mono Lake harbors live bacteria". mBio. 15 (9): e01623-24. doi:10.1128/mbio.01623-24. PMC 11389367. PMID 39140743.
  42. ^ Schiwitza, Sabine; Arndt, Hartmut; Nitsche, Frank (2019). "First description of an euryoecious acanthoecid choanoflagellate species, Enibas tolerabilis gen. et sp. nov. from a salar in the Chilean Andes based on morphological and transcriptomic data". European Journal of Protistology. 67: 106–113. doi:10.1016/j.ejop.2018.11.004. PMID 30572146. S2CID 58552347.
  43. ^ Özdikmen, Hüseyin (2009). "Substitute names for some unicellular animal taxa (Protozoa)" (PDF). Munis Entomology & Zoology. 4 (1): 233–256. Retrieved 15 August 2025.
  44. ^ Bowles, Alexander M.C.; Williamson, Christopher J.; Williams, Tom A.; Lenton, Timothy M.; Donoghue, Philip C.J. (2023). "The origin and early evolution of plants". Trends in Plant Science. 28 (3): 312–329. doi:10.1016/j.tplants.2022.09.009. hdl:10871/131900.
  45. ^ a b Muñoz-Gómez, Sergio A.; Mejía-Franco, Fabián G.; Durnin, Keira; Colp, Morgan; Grisdale, Cameron J.; Archibald, John M.; Slamovits, Claudio H. (2017). "The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known". Current Biology. 27 (11): 1677–1684.e4. doi:10.1016/j.cub.2017.04.054.
  46. ^ a b Yoon, Hwan Su; Nelson, Wendy; Lindstrom, Sandra C.; Boo, Sung Min; Pueschel, Curt; Qiu, Huan; Bhattacharya, Debashish (2017). "Rhodophyta". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists (PDF). Vol. 1 (2nd ed.). Cham: Springer International Publishing. pp. 89–135. doi:10.1007/978-3-319-28149-0_33. ISBN 978-3-319-28149-0. LCCN 2017945328.
  47. ^ Yoon, Hwan Su; Zuccarello, Giuseppe C.; Bhattacharya, Debashish (2010-07-27). "Evolutionary history and taxonomy of red algae". In Seckbach, Joseph; Chapman, David J. (eds.). Red Algae in the Genomic Age. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 13. Dordrecht: Springer. pp. 27–42. doi:10.1007/978-90-481-3795-4_2. ISBN 978-90-481-3795-4.
  48. ^ Saunders, Gary W.; Hommersand, Max H. (2004). "Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data". American Journal of Botany. 91 (10): 1494–1507. doi:10.3732/ajb.91.10.1494. ISSN 0002-9122.
  49. ^ Yoon, Hwan Su; Müller, Kirsten M.; Sheath, Robert G.; Ott, Franklyn D.; Bhattacharya, Debashish (2006). "Defining the major lineages of red algae (Rhodophyta)". Journal of Phycology. 42 (2): 482–492. doi:10.1111/j.1529-8817.2006.00210.x. ISSN 0022-3646.
  50. ^ Le Gall, Line; Saunders, Gary W. (2007). "A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: Establishing the new red algal subclass Corallinophycidae". Molecular Phylogenetics and Evolution. 43 (3): 1118–1130. doi:10.1016/j.ympev.2006.11.012. Retrieved 16 August 2025.
  51. ^ a b Vis, Morgan L.; Necchi, Orlando, Jr. Freshwater Red Algae: Phylogeny, Taxonomy and Biogeography. Cham: Springer. doi:10.1007/978-3-030-83970-3. ISBN 978-3-030-83970-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  52. ^ Choi, Han-Gu; Kraft, Gerald T.; Saunders, Gary W. (2000). "Nuclear small-subunit rDNA sequences from Ballia spp. (Rhodophyta): proposal of the Balliales ord. nov., Balliaceae fam. nov., Ballia nana sp. nov. and Inkyuleea gen. nov. (Ceramiales)". Phycologia. 39 (4): 272–287. doi:10.2216/i0031-8884-39-4-272.1. ISSN 0031-8884.
  53. ^ Entwisle, Timothy J.; Vis, Morgan L.; Chiasson, Wayne B.; Necchi Jr., Orlando; Sherwood, Alison R. (2009). "Systematics of the Batrachospermales (Rhodophyta)—a synthesis". Journal of Phycology. 45 (3): 704–715. doi:10.1111/j.1529-8817.2009.00686.x. ISSN 0022-3646.
  54. ^ Necchi Jr, Orlando; Garcia Filho, Auro; Paiano, Monica O. (7 March 2019). "Revision of Batrachospermum sections Acarposporophytum and Aristata (Batrachospermales, Rhodophyta) with the establishment of the new genera Acarposporophycos and Visia". Phytotaxa. 395 (2): 51. doi:10.11646/phytotaxa.395.2.1. ISSN 1179-3163.
  55. ^ Saunders, Gary W.; Necchi, Orlando (1 March 2002). "Nuclear rDNA sequences from Ballia prieurii support recognition of Balliopsis gen. nov. in the Batrachospermales (Florideophyceae, Rhodophyta)". Phycologia. 41 (1): 61–67. doi:10.2216/i0031-8884-41-1-61.1. ISSN 0031-8884.
  56. ^ Necchi, Orlando Jr.; Fo, Auro Silva Garcia; Paiano, Monica O.; Vis, Morgan L. (2019-11-02). "Revision of Batrachospermum section Macrospora (Batrachospermales, Rhodophyta) with the establishment of the new genus Montagnia". Phycologia. 58 (6): 582–591. Bibcode:2019Phyco..58..582N. doi:10.1080/00318884.2019.1624143. hdl:11449/196400. ISSN 0031-8884. S2CID 203412057.
  57. ^ Entwisle, Timothy J.; Johnston, Emily T.; Lam, Daryl W.; Stewart, Sarah A.; Vis, Morgan L. "Nocturama gen. nov., Nothocladus s. lat. and other taxonomic novelties resulting from the further resolution of paraphyly in Australasian members of Batrachospermum (Batrachospermales, Rhodophyta)". Journal of Phycology. 52 (3): 384–396. Bibcode:2016JPcgy..52..384E. doi:10.1111/jpy.12401. ISSN 1529-8817. PMID 27273531. S2CID 25810620.
  58. ^ Salomaki, Eric D.; Kwandrans, Janina; Eloranta, Pertti; Vis, Morgan L. (2014). "Molecular and morphological evidence for Sheathia gen. nov. (Batrachospermales, Rhodophyta) and three new species". Journal of Phycology. 50 (3): 526–542. Bibcode:2014JPcgy..50..526S. doi:10.1111/jpy.12179. ISSN 1529-8817. PMID 26988325. S2CID 13351303.
  59. ^ Wynne, Michael (2019). "Torularia Bonnemaison, 1828, a generic name to be reinstated for Atrophycus Necchi & Rossignolo 2017". ResearchGate.
  60. ^ Necchi, Orlando Jr.; Agostinho, Douglas C.; Vis, Morgan L. (2018). "Revision of Batrachospermum Section Virescentia (Batrachospermales, Rhodophyta) with the Establishment of the New Genus, Virescentia Stat. nov". Cryptogamie, Algologie. 39 (3): 313–338. doi:10.7872/crya/v39.iss3.2018.313. ISSN 0181-1568. S2CID 92778905.
  61. ^ Jayalakshmi, Panangattu Sankarji; John, Jose (4 March 2023). "Macrosporophycos sahyadricus (Batrachospermales, Rhodophyta), a new genus and species of freshwater red algae from the Western Ghats of India". Phycologia. 62 (2): 109–116. doi:10.1080/00318884.2023.2177062. ISSN 0031-8884.
  62. ^ Chapuis, Iara S.; Necchi, Orlando Jr.; Zuccarello, Giuseppe C.; Xie, Shu-Lian; Aboal, Marina; Castillo, Pedro M. Sánchez; Vis, Morgan L. (2017). "A new genus, Volatus and four new species of Batrachospermum sensu stricto (Batrachospermales, Rhodophyta)". Phycologia. 56 (4): 454–468. Bibcode:2017Phyco..56..454C. doi:10.2216/16-73.1. ISSN 0031-8884. S2CID 89721478.
  63. ^ Saunders, Gary W.; Wadland, Katelyn L.; Salomaki, Eric D.; Lane, Christopher E. (2017). "A contaminant DNA barcode sequence reveals a new red algal order, Corynodactylales (Nemaliophycidae, Florideophyceae)". Botany. 95 (6): 561–566. doi:10.1139/cjb-2017-0010. ISSN 1916-2790.
  64. ^ Scott, Fiona J.; Saunders, Gary W.; Kraft, Gerald T. (1 November 2013). "Entwisleia bella, gen. et sp. nov ., a novel marine 'batrachospermaceous' red alga from southeastern Tasmania representing a new family and order in the Nemaliophycidae". European Journal of Phycology. 48 (4): 398–410. doi:10.1080/09670262.2013.849359. ISSN 0967-0262. Retrieved 18 August 2025.
  65. ^ F. Costa, Joana; Lin, Showe-Mei; Macaya, Erasmo C.; Fernández-García, Cindy; Verbruggen, Heroen (2016). "Chloroplast genomes as a tool to resolve red algal phylogenies: a case study in the Nemaliales". BMC Evolutionary Biology. 16 (1): 205. doi:10.1186/s12862-016-0772-3. ISSN 1471-2148. PMC 5057469. PMID 27724867.
  66. ^ Díaz-Tapia, Pilar; Pasella, Marisa M.; Verbruggen, Heroen; Maggs, Christine A. (2019). "Morphological evolution and classification of the red algal order Ceramiales inferred using plastid phylogenomics" (PDF). Molecular Phylogenetics and Evolution. 137: 76–85. doi:10.1016/j.ympev.2019.04.022. Retrieved 18 August 2025.
  67. ^ Fang, Kunpeng; Nan, Fangru; Feng, Jia; Lü, Junping; Liu, Qi; Liu, Xudong; Xie, Shulian (2022). "Pauciramus yunnanensis, gen. et sp. nov., a novel freshwater red alga from China with proposal of the Ottiales ord. nov. (Nemaliophycidae, Rhodophyta)". Journal of Oceanology and Limnology. 40 (3): 1245–1256. doi:10.1007/s00343-021-1154-2. ISSN 2096-5508. Retrieved 19 August 2025.
  68. ^ a b Saunders, Gary W.; Jackson, Chris; Salomaki, Eric D. (2018). "Phylogenetic analyses of transcriptome data resolve familial assignments for genera of the red-algal Acrochaetiales-Palmariales Complex (Nemaliophycidae)". Molecular Phylogenetics and Evolution. 119: 151–159. doi:10.1016/j.ympev.2017.11.002.
  69. ^ Saunders, Gary W. (8 April 2020). "Torngatum varicrassum gen. et sp. nov. expands taxonomic breadth for both the Meiodiscaceae (Palmariales, Rhodophyta) and the red algal flora of the Canadian Arctic" (PDF). Notulae Algarum. 2020 (132). ISSN 2009-8987.
  70. ^ Rösler, Anja; Perfectti, Francisco; Peña, Viviana; Braga, Juan Carlos (2016). "Phylogenetic relationships of Corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef‐building corallines". Journal of Phycology. 52 (3): 412–431. doi:10.1111/jpy.12404. ISSN 0022-3646.
  71. ^ Caragnano, Annalisa; Foetisch, Alexandra; Maneveldt, Gavin W.; Millet, Laurent; Liu, Li‐Chia; Lin, Showe‐Mei; Rodondi, Graziella; Payri, Claude E. (2018). "Revision of Corallinaceae (Corallinales, Rhodophyta): recognizing Dawsoniolithon gen. nov., Parvicellularium gen. nov. and Chamberlainoideae subfam. nov. containing Chamberlainium gen. nov. and Pneophyllum". Journal of Phycology. 54 (3): 391–409. doi:10.1111/jpy.12644. ISSN 0022-3646.
  72. ^ Teichert, Sebastian; Woelkerling, William; Munnecke, Axel (2019). "Coralline red algae from the Silurian of Gotland indicate that the order Corallinales (Corallinophycidae, Rhodophyta) is much older than previously thought". Palaeontology. 62 (4): 599–613. doi:10.1111/pala.12418. ISSN 0031-0239.
  73. ^ Hind, Katharine R.; Saunders, Gary W. (2013). "A Molecular Phylogenetic Study of the Tribe Corallineae (Corallinales, Rhodophyta) with an Assessment of Genus‐Level Taxonomic Features and Descriptions of Novel Genera". Journal of Phycology. 49 (1): 103–114. doi:10.1111/jpy.12019. ISSN 0022-3646.
  74. ^ Craig Bailey, J. (1999). "Phylogenetic positions of Lithophyllum incrustans and Titanoderma pustulatum (Corallinaceae, Rhodophyta) based on 18S rRNA gene sequence analyses, with a revised classification of the Lithophylloideae". Phycologia. 38 (3): 208–216. doi:10.2216/i0031-8884-38-3-208.1. ISSN 0031-8884.
  75. ^ Townsend, R.A.; Huisman, J.M. (2018). "Coralline algae". In J.M., Huisman (ed.). Algae of Australia. Marine benthic algae of north-western Australia. 2. Red algae. Canberra & Melbourne: ABRS & CSIRO Publishing. pp. 86–97, 105–137, 143–146. ISBN 9781486309542.
  76. ^ Jeong, So Young; Nelson, Wendy A.; Sutherland, Judith E.; Peña, Viviana; Le Gall, Line; Diaz‐Pulido, Guillermo; Won, Boo Yeon; Cho, Tae Oh (2021). "Corallinapetrales and Corallinapetraceae: A new order and family of coralline red algae including Corallinapetra gabrielii comb. nov" (PDF). Journal of Phycology. 57 (3): 849–862. doi:10.1111/jpy.13115. ISSN 0022-3646. Retrieved 20 August 2025.
  77. ^ a b Cheng, Shifeng; Xian, Wenfei; Fu, Yuan; Marin, Birger; Keller, Jean; et al. (2019). "Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution". Cell. 179 (5): 1057–1067.e14. doi:10.1016/j.cell.2019.10.019.
  78. ^ a b Li L, Wang S, Wang H, Sahu SK, Marin B, Li H, Xu Y, Liang H, Li Z, Cheng S, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du H, Yang H, Wang J, Wong GKS, Xu X, Liu X, Van de Peer Y, Melkonian M, Liu H (2020). "The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants". Nature Ecology & Evolution. 4 (9): 1220–1231. Bibcode:2020NatEE...4.1220L. doi:10.1038/s41559-020-1221-7. PMC 7455551. PMID 32572216.
  79. ^ Yang, Zhiping; Ma, Xiaoya; Wang, Qiuping; Tian, Xiaolin; Sun, Jingyan; Zhang, Zhenhua; Xiao, Shuhai; De Clerck, Olivier; Leliaert, Frederik; Zhong, Bojian (11 September 2023). "Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae" (PDF). Nature Communications. 14 (1). doi:10.1038/s41467-023-41137-5. ISSN 2041-1723. PMC 10495350. PMID 37696791. Retrieved 5 August 2025.
  80. ^ Zechman, F. W.; Verbruggen, H.; Leliaert, F.; Ashworth, M.; Buchheim, M. A.; Fawley, M. W.; Spalding, H.; Pueschel, C. M.; Buchheim, J. A.; Verghese, B.; Hanisak, M. D. (2010). "An Unrecognized Ancient Lineage of Green Plants Persists in Deep Marine Waters". Journal of Phycology. 46 (6): 1288–1295. Bibcode:2010JPcgy..46.1288Z. doi:10.1111/j.1529-8817.2010.00900.x.
  81. ^ Crépeault, Olivier; Otis, Christian; Pombert, Jean-François; Turmel, Monique; Lemiuex, Claude (2024). "Comparative plastome and mitogenome analyses indicate that the marine prasinophyte green algae Pycnococcus provasolii and Pseudoscourfieldia marina (Pseudoscourfieldiophyceae class nov., Chlorophyta) represent morphotypes of the same species". Journal of Phycology. 60 (4): 1021–1027. Bibcode:2024JPcgy..60.1021C. doi:10.1111/jpy.13482. PMID 38989846.
  82. ^ Daugbjerg, Niels; Fassel, Nicolai M.D.; Moestrup, Øjvind (2020). "Microscopy and phylogeny of Pyramimonas tatianae sp. nov. (Pyramimonadales, Chlorophyta), a scaly quadriflagellate from Golden Horn Bay (eastern Russia) and formal description of Pyramimonadophyceae classis nova". European Journal of Phycology. 55 (1): 49–63. Bibcode:2020EJPhy..55...49D. doi:10.1080/09670262.2019.1638524.
  83. ^ Marin B (2012). "Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons". Protist. 163 (5): 778–805. doi:10.1016/j.protis.2011.11.004. PMID 22192529.
  84. ^ a b c d e Fučíková K, Lewis PO, Neupane S, Karol KG, Lewis LA (2019). "Order, please! Uncertainty in the ordinal-level classification of Chlorophyceae". PeerJ. 7 e6899. doi:10.7717/peerj.6899. PMC 6525593. PMID 31143537.
  85. ^ Fučíková, Karolina; Lewis, Paul O.; Lewis, Louise A. (2013). "Putting incertae sedis taxa in their place: a proposal for ten new families and three new genera in Sphaeropleales (Chlorophyceae, Chlorophyta)". Journal of Phycology. 50 (1): 14–25. doi:10.1111/jpy.12118. PMID 26988005.
  86. ^ a b Fučíková K, Taylor M, Lewis LA, Niece BK, Isaac AS, Pietrasiak N (2023). "Johansenicoccus eremophilus gen. et sp. nov., a novel evolutionary lineage in Chlorophyceae with unusual genomic features". Plant Ecology and Evolution. 156 (3): 311–325. Bibcode:2023PlEcE.156..311F. doi:10.5091/plecevo.105762.
  87. ^ McManus HA, Lewis LA (2011). "Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on Pediastrum duplex". Journal of Phycology. 47 (1): 152–163. Bibcode:2011JPcgy..47..152M. doi:10.1111/j.1529-8817.2010.00940.x. PMID 27021721.
  88. ^ Irisarri, Iker; Darienko, Tatyana; Pröschold, Thomas; Fürst-Jansen, Janine M. R.; Jamy, Mahwash; de Vries, Jan (2021). "Unexpected cryptic species among streptophyte algae most distant to land plants". Proceedings of the Royal Society B: Biological Sciences. 288 (1963): 20212168. doi:10.1098/rspb.2021.2168. PMC 8611356. PMID 34814752.
  89. ^ Bierenbroodspot, Maiike J.; Darienko, Tatyana; de Vries, Sophie; Fürst-Jansen, Janine M.R.; Buschmann, Henrik; Pröschold, Thomas; Irisarri, Iker; de Vries, Jan (5 February 2024). "Phylogenomic insights into the first multicellular streptophyte". Current Biology. 34 (3): 670–681. Bibcode:2024CBio...34E.670B. doi:10.1016/j.cub.2023.12.070. PMC 10849092. PMID 38244543.
  90. ^ Rensing SA (2020). "How Plants Conquered Land". Cell. 181 (5): 964–966. doi:10.1016/j.cell.2020.05.011. PMID 32470404.
  91. ^ Hess S, Williams SK, Busch A, Irisarri I, Delwiche CF, de Vries S, Darienko T, Roger AJ, Archibald JM, Buschmann H, von Schwartzenberg K, de Vries J (2022). "A phylogenomically informed five-order system for the closest relatives of land plants". Current Biology. 32 (20): 4473–4482. Bibcode:2022CBio...32E4473H. doi:10.1016/j.cub.2022.08.022. PMC 9632326. PMID 36055238.
  92. ^ a b Nishimura Y, Kume K, Sonehara K, Tanifuji G, Shiratori T, Ishida K, Hashimoto T, Inagaki Y, Ohkuma M (2020). "Mitochondrial Genomes of Hemiarma marina and Leucocryptos marina Revised the Evolution of Cytochrome c Maturation in Cryptista". Frontiers in Ecology and Evolution. 8: 140. doi:10.3389/fevo.2020.00140.
  93. ^ a b Yazaki, Euki; Yabuki, Akinori; Imaizumi, Ayaka; Kume, Keitaro; Hashimoto, Tetsuo; Inagaki, Yuji (2022). "The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris". Open Biol. 12: 210376. doi:10.1098/rsob.210376. PMC 9006020.
  94. ^ Cavalier-Smith, T. (1989). "The kingdom Chromista". In Green, J.C.; Leadbeater, B.S.C.; Diver, W.L. (eds.). The chromophyte algae: problems and perspectives. The Systematics Association Special Volume No. 38. Oxford: Clarendon Press. pp. 381–408.
  95. ^ Cavalier-Smith, T. (1986). "The Kingdom Chromista: Origin and Systematics" (PDF). In Round, F.E.; Chapman, D.J. (eds.). Progress in Phycological Research. Vol. 4. Bristol: Biopress. pp. 309–347.
  96. ^ Cavalier-Smith, Thomas (28 June 2004). "Chromalveolate Diversity and Cell Megaevolution: Interplay of Membranes, Genomes and Cytoskeleton". In Hirt, Robert P.; Horner, David S. (eds.). Organelles, Genomes and Eukaryote Phylogeny: An Evolutionary Synthesis in the Age of Genomics. CRC Press for the Systematics Association. pp. 86–126. ISBN 0-203-50893-9. LCCN 2003070023.
  97. ^ Okamoto, Noriko; Inouye, Isao (2005). "The Katablepharids are a Distant Sister Group of the Cryptophyta: A Proposal for Katablepharidophyta Divisio Nova/Kathablepharida Phylum Novum Based on SSU rDNA and Beta-Tubulin Phylogeny". Protist. 156 (2): 163–179. doi:10.1016/j.protis.2004.12.003. PMID 16171184.
  98. ^ a b c d Cavalier-Smith, Thomas (26 August 2013). "Symbiogenesis: Mechanisms, Evolutionary Consequences, and Systematic Implications". Annual Review of Ecology, Evolution, and Systematics. 44: 145–172. doi:10.1146/annurev-ecolsys-110411-160320. Cite error: The named reference "Cavalier-Smith-2013" was defined multiple times with different content (see the help page).
  99. ^ a b c Cavalier-Smith, Thomas; Chao, Ema E.; Lewis, Rhodri (2015). "Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista". Molecular Phylogenetics and Evolution. 93: 331–362. doi:10.1016/j.ympev.2015.07.004. Cite error: The named reference "Cavalier-Smith-2015" was defined multiple times with different content (see the help page).
  100. ^ a b c d Novarino, Gianfranco; Lucas, Ian A. N. (1993). "Some proposals for a new classification system of the Cryptophyceae". Botanical Journal of the Linnean Society. 111: 3–21. doi:10.1111/j.1095-8339.1993.tb01886.x.
  101. ^ a b c d e f g h i j Cavalier-Smith, Thomas (5 September 2017). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences". Protoplasma. 255 (1): 297–357. doi:10.1007/s00709-017-1147-3. PMC 5756292. PMID 28875267.
  102. ^ Clay, Brec L. (2015). "Cryptomonads". In Wehr, John D.; Sheath, Robert G.; Kociolek, J. Patrick (eds.). Freshwater Algae of North America: Ecology and Classification. Academic Press. ISBN 978-0-12-385876-4.
  103. ^ Daugbjerg, Niels; Norlin, Andreas; Lovejoy, Connie (2018-07-25). "Baffinella frigidus gen. et sp. nov. (Baffinellaceae fam. nov., Cryptophyceae) from Baffin Bay: Morphology, pigment profile, phylogeny, and growth rate response to three abiotic factors" (PDF). J. Phycol. 54 (5): 665–680. Bibcode:2018JPcgy..54..665D. doi:10.1111/jpy.12766. ISSN 1529-8817. PMID 30043990. S2CID 51718360. Archived from the original (PDF) on 2018-10-12. Retrieved 2019-05-26.
  104. ^ a b c Sierra, Roberto; Mauffrey, Florian; Cruz, Joana; Holzmann, Maria; Gooday, Andrew J.; et al. (2022). "Taxon-rich transcriptomics supports higher-level phylogeny and major evolutionary trends in Foraminifera" (PDF). Molecular Phylogenetics and Evolution. 174 (107546) 107546. Bibcode:2022MolPE.17407546S. doi:10.1016/j.ympev.2022.107546. PMID 35690380. S2CID 249608315.
  105. ^ Pawlowski, J.; Lejzerowicz, F.; Esling, P. (2014-10-01). "Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future". The Biological Bulletin. 227 (2): 93–106. doi:10.1086/BBLv227n2p93. ISSN 0006-3185. PMID 25411369. S2CID 24388876.
  106. ^ a b Kaminski, M.A. (2004). "The Year 2000 classification of the agglutinated foraminifera". In Bubik, M.; Kaminski, M.A. (eds.). Proceedings of the Sixth International Workshop on Agglutinated Foraminifera (Prague, Czech Republic, September 1-7, 2001). London: Grzybowski Foundation. pp. 237–255. ISBN 9788391238547.
  107. ^ a b Pawlowski, Jan; Holzmann, Maria; Tyszka, Jarosław (March 2013). "New supraordinal classification of Foraminifera: Molecules meet morphology" (PDF). Marine Micropaleontology. 100: 1–10. Bibcode:2013MarMP.100....1P. doi:10.1016/j.marmicro.2013.04.002. Retrieved 7 January 2019.
  108. ^ Mikhalevich, Valeria I. (2013). "New Insight into the Systematics and Evolution of the Foraminifera". Micropaleontology. 59 (6): 493–527. JSTOR 24413333.
  109. ^ Loeblich, Alfred R., Jr.; Tappan, Helen (1987). Foraminiferal genera and their classification. New York: Springer. doi:10.1007/978-1-4899-5760-3. ISBN 978-1-4899-5760-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  110. ^ Kaminski, Michael A. (2014). "The Year 2010 Classification of the Agglutinated Foraminifera". Micropaleontology. 60 (1. Advances in agglutinated foraminiferal research: The Ninth International Workshop on Agglutinated Foraminifera, IWAF-9): 89–108. JSTOR 24413648.
  111. ^ a b c d e f g Arenillas, Ignacio; Arz, José Antonio; Gilabert, Vicente (2022). "An updated suprageneric classification of planktic foraminifera after growing evidence of multiple benthic-planktic transitions". Spanish Journal of Palaeontology. 37 (1). Sociedad Española de Paleontología: 1–34. doi:10.7203/sjp.22189. ISSN 2255-0550.
  112. ^ Apothéloz‐Perret‐Gentil, Laure; Pawlowski, Jan (2015). "Molecular Phylogeny and Morphology of Leannia veloxifera n. gen. et sp. Unveils a New Lineage of Monothalamous Foraminifera". Journal of Eukaryotic Microbiology. 62 (3): 353–361. doi:10.1111/jeu.12190. ISSN 1066-5234.
  113. ^ Gooday, Andrew J.; Holzmann, Maria; Schwarzgruber, Elsa; Cedhagen, Tomas; Pawlowski, Jan (2022). "Morphological and molecular diversity of monothalamids (Rhizaria, Foraminifera), including two new species and a new genus, from SW Greenland" (PDF). European Journal of Protistology. 86 125932. doi:10.1016/j.ejop.2022.125932. PMID 36347189.
  114. ^ a b c d e Siemensma, Ferry; Holzmann, Maria; Apothéloz-Perret-Gentil, Laure; Clauß, Steffen; Voelcker, Eckhard; et al. (2021). "Broad sampling of monothalamids (Rhizaria, Foraminifera) gives further insight into diversity of non-marine Foraminifera". European Journal of Protistology. 77 125744. doi:10.1016/j.ejop.2020.125744. PMID 33191053. S2CID 225144520.
  115. ^ Maldonado, Manuel; López-Acosta, María; Sitjà, Cèlia; Aguilar, Ricardo; García, Silvia; Vacelet, Jean (10 June 2013). "A giant foraminifer that converges to the feeding strategy of carnivorous sponges: Spiculosiphon oceana sp. nov. (Foraminifera, Astrorhizida)". Zootaxa. 3669 (4): 571–584. doi:10.11646/zootaxa.3669.4.9. hdl:10261/92975. PMID 26312358.
  116. ^ Sergeeva, N. G.; Anikeeva, O. V. (2021). "Vellaria solenta (Monothalamea: Allogromiidae) — new species of soft-walled foraminifera from Sivash Bay (the Sea of Azov)" (PDF). Invertebrate Zoology. 18 (2): 152–158. doi:10.15298/invertzool.18.2.06. S2CID 237368888.
  117. ^ Wylezich, Claudia; Kaufmann, Danielle; Marcuse, Marlen; Hülsmann, Norbert (2014). "Dracomyxa pallida gen. et sp. nov.: A New Giant Freshwater Foraminifer, with Remarks on the Taxon Reticulomyxidae (emend.)". Protist. 165 (6): 854–869. doi:10.1016/j.protis.2014.10.004.
  118. ^ Gooday, Andrew J; Holzmann, Maria; Barrenechea-Angeles, InéS; Lim, Swee-Cheng; Pawlowski, Jan (6 March 2024). "New xenophyophores (Foraminifera, Monothalamea) from the eastern Clarion-Clipperton Zone (equatorial Pacific)". Zootaxa. 5419 (2): 151–188. doi:10.11646/zootaxa.5419.2.1. ISSN 1175-5334. Retrieved 4 August 2025.
  119. ^ Schlagintweit, Felix (2024). "Ramalhoa adherens (Ramalho 2015) n. gen., n. comb., a loftusiid attached benthic foraminifera (family Ramalhoidae n. fam.) from the Upper Jurassic of Portugal". Micropaleontology. 70 (1): 89–95. doi:10.47894/mpal.70.1.06. Retrieved 15 August 2025.
  120. ^ Schlagintweit, Felix; Rashidi, Koorosh (2018). "Suraqalatia brasieri Görmuş, Lawa & Nuaimy, 2017 (Larger Benthic Forainifera; Suraqalatiidae n. fam.) from the late Maastrichtian of the Tarbur Formation (Zagros Fold-Thrust-Belt) and remarks on Dicyclina Munier-Chalmas, 1887" (PDF). Acta Palaeontologica Romaniae. 14 (1): 21–29. Retrieved 15 August 2025.
  121. ^ Schlagintweit, Felix; Rashidi, Koorosh (1 February 2022). "Bakhtiarellidae, a new end-Cretaceous 'hauraniiform' family of Larger Benthic Foraminifera: taxonomic inventory and phylogenetic assessment". Historical Biology. 34 (2): 335–345. doi:10.1080/08912963.2021.1910821. ISSN 0891-2963.
  122. ^ Suzuki, Noritoshi; O'Dogherty, Luis; Caulet, Jean-Pierre; Dumitrica, Paulian (2021). "A new integrated morpho- and molecular systematic classification of Cenozoic radiolarians (Class Polycystinea) – suprageneric taxonomy and logical nomenclatorial acts". Geodiversitas. 43 (15): 405–573. doi:10.5252/geodiversitas2021v43a15.
  123. ^ a b Cite error: The named reference Orodaria was invoked but never defined (see the help page).
  124. ^ a b Takahashi O, Maekawa T, Dumitrica P, Nguyen PD, Komatsu T (2022). "Latentifistularia and other radiolarian species from the lower Smithian (Lower Triassic) Lang Son Formation, NE Vietnam". Revue de micropaléontologie. 75 100610. Bibcode:2022RvMic..7500610T. doi:10.1016/j.revmic.2022.100610. S2CID 246833665.
  125. ^ Noble P, Aitchison JC, Danelian T, Dumitrica P, Maletz J, Suzuki N, Cuvelier J, Caridroit M, O'Dogherty L (2017). "Taxonomy of Paleozoic radiolarian genera" (PDF). Geodiversitas. 39 (3): 419–502. Bibcode:2017Geodv..39..419N. doi:10.5252/g2017n3a4. S2CID 89647246.
  126. ^ a b Cho, Anna; Tikhonenkov, Denis V.; Hehenberger, Elisabeth; Karnkowska, Anna; Mylnikov, Alexander P.; Keeling, Patrick J. (2022). "Monophyly of diverse Bigyromonadea and their impact on phylogenomic relationships within stramenopiles" (PDF). Molecular Phylogenetics and Evolution. 171 (107468): 107468. doi:10.1016/j.ympev.2022.107468. ISSN 1055-7903. PMID 35358688. S2CID 247815732.
  127. ^ a b c Cho, Anna; Tikhonenkov, Denis V.; Lax, Gordon; Prokina, Kristina I.; Keeling, Patrick J. (2024). "Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean". Molecular Phylogenetics and Evolution. 190: 107964. doi:10.1016/j.ympev.2023.107964. Retrieved 11 August 2025.
  128. ^ H.S. Yoon; R.A. Andersen; S.M. Boo; D. Bhattacharya (17 February 2009). "Stramenopiles". Encyclopedia of Microbiology (Third ed.). pp. 721–731. doi:10.1016/B978-012373944-5.00253-4. ISBN 978-0-12-373944-5. Retrieved 2 March 2024.
  129. ^ a b c Adl, Sina M.; Simpson, Alastair G. B.; Farmer, Mark A.; Andersen, Robert A.; Anderson, O. Roger; et al. (19 October 2005). "The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists". The Journal of Eukaryotic Microbiology. 52 (2): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873.
  130. ^ Leedale, Gordon F. (May 1974). "How many are the kingdoms of organisms?" (PDF). Taxon. 23 (2–3): 261–270. doi:10.2307/1218705. ISSN 0040-0262. JSTOR 1218705.
  131. ^ Cavalier-Smith, T. (1981). "Eukaryote kingdoms: seven or nine?" (PDF). BioSystems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818.
  132. ^ a b Cavalier-Smith, T. (1986). "The Kingdom Chromista: Origin and Systematics" (PDF). In Round, F.E.; Chapman, D.J. (eds.). Progress in Phycological Research. Vol. 4. Bristol: Biopress. pp. 309–347. ISBN 094873700X. OL 15332140M.
  133. ^ Patterson, D.J. (1989). "Stramenopiles: Chromophytes from a protistan perspective". In Green, J.C.; Leadbeater, B.S.C.; Diver, W.L. (eds.). The chromophyte algae: Problems and perspectives. Oxford: Clarendon Press. pp. 357–379. ISBN 978-0198577133.
  134. ^ Margulis, Lynn; Chapman, Michael J. (2009). Kingdoms & Domains: An Illustrated Guide to the Phyla of Life on Earth (4th ed.). W. H. Freeman and Company. ISBN 978-0-12-373621-5.
  135. ^ a b c d Dick, Michael W. (2013). Straminipilous Fungi: Systematics of the Peronosporomycetes Including Accounts of the Marine Straminipilous Protists, the Plasmodiophorids and Similar Organisms. Dordrecht: Springer. doi:10.1007/978-94-015-9733-3. ISBN 978-94-015-9733-3.
  136. ^ a b Beakes, Gordon W.; Honda, Daiske; Thines, Marco (2014). "Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota". In McLaughlin, David J.; Spatafora, Joseph W. (eds.). Systematics and Evolution. Part A. The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. Vol. 7 (2nd ed.). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-55318-9_3.
  137. ^ Thakur, Rabindra; Shiratori, Takashi; Ishida, Ken-ichiro (2019). "Taxon-rich Multigene Phylogenetic Analyses Resolve the Phylogenetic Relationship Among Deep-branching Stramenopiles". Protist. 170 (5): 125682. doi:10.1016/j.protis.2019.125682. ISSN 1434-4610. PMID 31568885. S2CID 202865459.
  138. ^ Weston EJ, Eglit Y, Simpson AG (2023). "Kaonashia insperata gen. et sp. nov., a eukaryotrophic flagellate, represents a novel major lineage of heterotrophic stramenopiles". Journal of Eukaryotic Microbiology. 71 (1): e13003. doi:10.1111/jeu.13003. PMID 37803921.
  139. ^ Cavalier-Smith, Thomas (1998). "A revised six-kingdom system of life". Biological Reviews. 73 (3): 203–266. doi:10.1111/j.1469-185X.1998.tb00030.x. PMID 9809012.
  140. ^ Rybarski, Alexandra E.; Nitsche, Frank; Soo Park, Jong; Filz, Paulina; Schmidt, Patricia; et al. (2021). "Revision of the phylogeny of Placididea (Stramenopiles): Molecular and morphological diversity of novel placidid protists from extreme aquatic environments". European Journal of Protistology. 81 125809. doi:10.1016/j.ejop.2021.125809. ISSN 0932-4739. PMID 34673437. S2CID 236377023.
  141. ^ Bennett, Reuel M.; Honda, D.; Beakes, Gordon W.; Thines, Marco (2017). "Labyrinthulomycota". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 1 (2nd ed.). Springer. pp. 507–542. doi:10.1007/978-3-319-28149-0_25. ISBN 978-3-319-28147-6.
  142. ^ Kostka, Martin (2017). "Opalinata". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 1 (2nd ed.). Springer. pp. 543–566. doi:10.1007/978-3-319-28149-0_4. ISBN 978-3-319-28147-6.
  143. ^ a b c Schoenle, Alexandra; Hohlfeld, Manon; Rosse, Mona; Filz, Paulina; Wylezich, Claudia; Nitsche, Frank; Arndt, Hartmut (2020). "Global comparison of bicosoecid Cafeteria-like flagellates from the deep ocean and surface waters, with reorganization of the family Cafeteriaceae". European Journal of Protistology. 73 125665. doi:10.1016/j.ejop.2019.125665. PMID 31978633.
  144. ^ Jirsová, Dagmar; Füssy, Zoltán; Richtová, Jitka; Gruber, Ansgar; Oborník, Miroslav (2019). "Morphology, Ultrastructure, and Mitochondrial Genome of the Marine Non-Photosynthetic Bicosoecid Cafileria marina Gen. et sp. nov". Microorganisms. 7 (8): 240. doi:10.3390/microorganisms7080240. PMC 6723347. PMID 31387253.
  145. ^ Harder, Christoffer Bugge; Ekelund, Flemming; Karpov, Sergey A. (March 2014). "Ultrastructure and phylogenetic position of Regin rotiferus and Otto terricolus genera et species novae (Bicosoecida, Heterokonta/Stramenopiles)". Protist. 165 (2): 144–160. doi:10.1016/j.protis.2014.01.004. PMID 24637333.
  146. ^ Hassett, Brandon T. (2020). "A Widely Distributed Thraustochytrid Parasite of Diatoms Isolated from the Arctic Represents a gen. and sp. nov". Journal of Eukaryotic Microbiology. 67 (4). International Society of Protistologists: 480–490. doi:10.1111/jeu.12796. hdl:10037/19021. PMID 32249965.
  147. ^ Prokina KI, Yubuki N, Tikhonenkov DV, Ciobanu MC, López-García P, Moreira D (2024). "Refurbishing the marine parasitoid order Pirsoniales with newly (re) described marine and freshwater free-living predators". Journal of Eukaryotic Microbiology. 71 (6): e13061. doi:10.1111/jeu.13061. PMC 11603286. PMID 39350673.
  148. ^ Thines M (2018). "Oomycetes". Current Biology. 28 (15): R812 – R813. Bibcode:2018CBio...28.R812T. doi:10.1016/j.cub.2018.05.062. PMID 30086308.
  149. ^ a b Beakes, Gordon W.; Thines, Marco (2017). "Hyphochytriomycota and Oomycota". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists (PDF) (2nd ed.). Cham: Springer International Publishing. pp. 435–505. doi:10.1007/978-3-319-28149-0_26. ISBN 978-3-319-28149-0. LCCN 2017945328.
  150. ^ Foissner, Ilse; Foissner, Wilhelm (28 July 1995). "Ciliatomyces nom. nov. for Ciliomyces Foissner & Foissner 1986 (Lagenidiaceae, Oomycota)" (PDF). Phyton. 35 (1): 115–116.
  151. ^ a b c Terpis, Kristina X.; Salomaki, Eric D.; Barcytė, Dovilė; Pánek, Tomáš; Verbruggen, Heroen; et al. (2025). "Multiple plastid losses within photosynthetic stramenopiles revealed by comprehensive phylogenomics". Current Biology. 35 (3): 483–499.e8. doi:10.1016/j.cub.2024.11.065.
  152. ^ a b c Safonov, Pavel (2024). "Types of flagellar apparatus of diatomists: morphological diversity and evolution". Protistology. 18 (3): 177–188. doi:10.21685/1680-0826-2024-18-3-1.
  153. ^ a b Cavalier-Smith, T.; Chao, E. E. (1996). "18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae (Ochrophyta)". Phycologia. 35 (6): 500–510. doi:10.2216/i0031-8884-35-6-500.1. ISSN 0031-8884.
  154. ^ Michael D. Guiry; Øjvind Moestrup; Robert A. Andersen (11 October 2023). "Validation of the phylum name Heterokontophyta" (PDF). Notulae Algarum. 2023 (297).
  155. ^ Azuma, Tomonori; Pánek, Tomáš; Tice, Alexander K.; Kayama, Motoki; Kobayashi, Mayumi; Miyashita, Hideaki; Suzaki, Toshinobu; Yabuki, Akinori; Brown, Matthew W.; Kamikawa, Ryoma (10 April 2022). "An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis". Molecular Biology and Evolution. 39 (4). doi:10.1093/molbev/msac065. PMC 9004409. PMID 35348760.
  156. ^ a b c Cho, Anna; Lax, Gordon; Keeling, Patrick J. (2024). "Phylogenomic analyses of ochrophytes (stramenopiles) with an emphasis on neglected lineages". Molecular Phylogenetics and Evolution. 198 108120. Bibcode:2024MolPE.19808120C. doi:10.1016/j.ympev.2024.108120. PMID 38852907.
  157. ^ Wynne, Michael J.; Furnari, Giovanni (2014). "A census of J.P.L.Dangeard's invalid taxa with proposals to resolve the nomenclatural problems of some of them". Nova Hedwigia. 98 (3): 515–527. Bibcode:2014NovaH..98..515W. doi:10.1127/0029-5035/2014/0169.
  158. ^ O'Kelly, Charles J. (1989). "The evolutionary origin of the brown algae: information from studies of motile cell ultrastructure". The Chromophyte Algae: Problems and Perspectives. The Systematics Association Special Volume No. 38. Oxford: Clarendon Press. pp. 255–278. ISBN 0-19-857713-3.
  159. ^ Preisig, Hans R. (26 January 1995). "A modern concept of chrysophyte classification". In Sandgren, Craig D.; Smol, John P.; Kristiansen, Jørgen (eds.). Chrysophyte Algae: Ecology, Physiology and Development. Cambridge University Press. pp. 46–74. doi:10.1017/CBO9780511752292.004. ISBN 978-0-521-46260-0.
  160. ^ Cavalier-Smith, T.; Chao, E.E.; Allsopp, M.T.E.P. (1995). "Ribosomal RNA evidence for chloroplast loss within Heterokonta: pedinellid relationships and a revised classification of ochristan algae". Archiv für Protistenkunde. 145 (3–4): 209–220. doi:10.1016/s0003-9365(11)80316-7.
  161. ^ a b c d e Graf, Louis; Yang, Eun Chan; Han, Kwi Young; Küpper, Frithjof C.; Benes, Kylla M.; et al. (December 2020). "Multigene Phylogeny, Morphological Observation and Re-examination of the Literature Lead to the Description of the Phaeosacciophyceae Classis Nova and Four New Species of the Heterokontophyta SI Clade" (PDF). Protist. 171 (6): 125781. doi:10.1016/j.protis.2020.125781. PMID 33278705. S2CID 227315556.
  162. ^ Boddi, Silvia; Bigazzi, Massimo; Sartoni, Gianfranco (1999). "Ultrastructure of vegetative and motile cells, and zoosporogenesis in Chrysonephos lewisii (Taylor) Taylor (Sarcinochrysidales, Pelagophyceae) in relation to taxonomy". European Journal of Phycology. 34 (3): 297–306. doi:10.1080/09670269910001736352. ISSN 0967-0262.
  163. ^ Wetherbee, Richard; Gornik, Sebastian G.; Grant, Brenna; Waller, Ross F. (2015). "Andersenia, a genus of filamentous, sand-dwelling Pelagophyceae from southeastern Australia". Phycologia. 54 (1): 35–48. doi:10.2216/14-107.1. ISSN 0031-8884.
  164. ^ Amaral, Raquel; Fawley, Karen P.; Němcová, Yvonne; Ševčíková, Tereza; Lukešová, Alena; et al. (2020). "Toward Modern Classification of Eustigmatophytes, Including the Description of Neomonodaceae Fam. Nov. and Three New Genera". Journal of Phycology. 56 (3): 630–648. Bibcode:2020JPcgy..56..630A. doi:10.1111/jpy.12980. PMC 7987219. PMID 32068883.
  165. ^ a b Di Franco, Arnaud; Baurain, Denis; Glöckner, Gernot; Melkonian, Michael; Philippe, Hervé (2021). "Lower statistical support with larger data sets: insights from the Ochrophyta radiation". Molecular Biology and Evolution. 39 (1): msab300. doi:10.1093/molbev/msab300. PMC 8763130. PMID 34694402.
  166. ^ Přibyl, Pavel; Procházková, Lenka (2022). "Trebonskia zoosporica, gen. et sp. nov., a new member of the Goniochloridales (Eustigmatophyceae, Stramenopiles) with an unusual mode of reproduction". European Journal of Phycology. 58 (2): 199–213. doi:10.1080/09670262.2022.2089913.
  167. ^ Fawley, Marvin W.; Nĕmcová, Yvonne; Fawley, Karen P. (2019). "Phylogeny and characterization of Paraeustigmatos columelliferus, gen. et sp. nov., a member of the Eustigmatophyceae that may represent a basal group within the Eustigmatales". Fottea. 19 (2): 107–114. Bibcode:2019Fotte..19..107F. doi:10.5507/fot.2019.002.
  168. ^ Cavalier-Smith, T.; Chao, E.E.; Thompson, C.E.; Hourihane, S.L. (1996). "Oikomonas, a Distinctive Zooflagellate Related to Chrysomonads". Archiv für Protistenkunde. 146 (3–4): 273–279. doi:10.1016/S0003-9365(96)80014-5.
  169. ^ a b c d Pietsch, Tobias; Nitsche, Frank; Arndt, Hartmut (2022). "High molecular diversity in the functional group of small bacterivorous non-scaled chrysomonad flagellates". European Journal of Protistology. 86: 125915. doi:10.1016/j.ejop.2022.125915.
  170. ^ a b Bock, Christina; Olefeld, Jana L.; Vogt, Janina C.; Albach, Dirk C.; Boenigk, Jens (2022). "Phylogenetic and functional diversity of Chrysophyceae in inland waters" (PDF). Organisms Diversity & Evolution. 22 (2): 327–341. doi:10.1007/s13127-022-00554-y. ISSN 1439-6092. Retrieved 25 August 2025.
  171. ^ Grossmann, Lars; Bock, Christina; Schweikert, Michael; Boenigk, Jens (2016). "Small but Manifold – Hidden Diversity in "Spumella‐like Flagellates"". Journal of Eukaryotic Microbiology. 63 (4): 419–439. doi:10.1111/jeu.12287. ISSN 1066-5234. PMC 5066751. PMID 26662881.
  172. ^ Pusztai, Martin; Jadrná, Iva; Škaloud, Pavel (25 October 2023). "Elucidating the phylogeny and taxonomic position of the genus Spiniferomonas Takahashi (Chrysophyceae)" (PDF). Fottea. 23 (2): 217–222. doi:10.5507/fot.2023.006. Retrieved 25 August 2025.
  173. ^ Kapustin, Dmitry; Kulikovskiy, Maxim (18 November 2022). "Chrysosphaerella septentrionalis sp. nov. (Chrysophyceae, Chromulinales), a New Species from the Arctic Including the Description of Chrysosphaerellaceae, fam. nov". Plants. 11 (22): 3166. doi:10.3390/plants11223166. ISSN 2223-7747. PMC 9694324. PMID 36432895.
  174. ^ a b Kawai, Hiroshi; Nakayama, Takeshi. "Heterokontophyta". In Frey, Wolfgang (ed.). Syllabus of Plant Families - Adolf Engler's Syllabus der Pflanzenfamilien. Part 2/1. Photoautotrophic eukaryotic algae: Glaucocystophyta, Cryptophyta, Dinophyta/Dinozoa, Haptophyta, Heterokontophyta/Ochrophyta, Chlorarachniophyta/Cercozoa, Euglenophyta/Euglenozoa, Chlorophyta, Streptophyta p.p. (13th ed.). Stuttgart: Borntraeger Science Publishers. pp. 61–176. ISBN 978-3-443-01083-6.
  175. ^ Kristiansen, Jørgen; Škaloud, Pavel (2017). "Chrysophyta". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists (PDF). Vol. 1 (2nd ed.). Cham: Springer International Publishing. pp. 331–366. doi:10.1007/978-3-319-28149-0_43. ISBN 978-3-319-28149-0. LCCN 2017945328.
  176. ^ Pusztai, Martin (2021). Elucidating the evolution and diversity of colonial chrysophytes (PhD thesis). Univerzita Karlova.
  177. ^ Molinari-Novoa, Eduardo A.; Guiry, Michael D. (2 March 2021). "Nomenclatural notes on algae. IV. Further replacement names for various algal taxa" (PDF). Notulae Algarum. 2021 (183): 1–10. ISSN 2009-8987.
  178. ^ Pusztai, Martin; Škaloud, Pavel (3 July 2019). "Elucidating the evolution and diversity of Uroglena-like colonial flagellates (Chrysophyceae): polyphyletic origin of the morphotype". European Journal of Phycology. 54 (3): 404–416. doi:10.1080/09670262.2019.1574030. ISSN 0967-0262.
  179. ^ Pietsch, Tobias (2023). Investigation of population dynamics, ecological traits and molecular phylogeny of bacterivorous chrysomonads (PhD thesis). Universität zu Köln.
  180. ^ Kapustin, Dmitry A.; Guiry, Michael D. (29 July 2019). "Reinstatement of Lepidochromonas Kristiansen (Lepidochromonadaceae fam. nov., Chrysophyceae)" (PDF). Phytotaxa. 413 (1): 49–53. doi:10.11646/phytotaxa.413.1.5. ISSN 1179-3163. Retrieved 24 August 2025.
  181. ^ Barcytė, Dovilė; Eikrem, Wenche; Engesmo, Anette; Seoane, Sergio; Wohlmann, Jens; et al. (2 March 2021). "Olisthodiscus represents a new class of Ochrophyta". Journal of Phycology. 57 (4): 1094–1118. Bibcode:2021JPcgy..57.1094B. doi:10.1111/jpy.13155. hdl:10852/86515. PMID 33655496.
  182. ^ Barcytė, Dovilė; Jaške, Karin; Pánek, Tomáš; Yurchenko, Tatiana; Ševčíková, Tereza; Eliášová, Anežka; Eliáš, Marek (2024). "A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology". Open Biology. 14 (10): 240022. doi:10.1098/rsob.240022. ISSN 2046-2441. PMC 11528492. PMID 39474867.
  183. ^ Wetherbee, Richard; Jackson, Christopher J.; Repetti, Sonja I.; Clementson, Lesley A.; Costa, Joana F.; et al. (9 December 2018). "The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes". J Phycol. 55 (2): 257–278. Bibcode:2019JPcgy..55..257W. doi:10.1111/jpy.12822. hdl:11343/233613. PMID 30536815. S2CID 54477112.
  184. ^ Kawai, Hiroshi; Hanyuda, Takeaki; Gao, Xu; Terauchi, Makoto; Miyata, Masahiko; Lindstrom, Sandra C.; Klochkova, Nina G.; Miller, Kathy Ann (12 January 2017). "Taxonomic revision of the Agaraceae with a description of Neoagarum gen. nov. and reinstatement of Thalassiophyllum". Journal of Phycology. 53 (2): 261–270. doi:10.1111/jpy.12511. ISSN 0022-3646.
  185. ^ Chang, Fook Hoe; Sutherland, Judy; Bradford‐Grieve, Janet (2017). "Taxonomic revision of Dictyochales (Dictyochophyceae) based on morphological, ultrastructural, biochemical and molecular data". Phycological Research. 65 (3): 235–247. doi:10.1111/pre.12181. ISSN 1322-0829.
  186. ^ Edvardsen, Bente; Eikrem, Wenche; Shalchian‐Tabrizi, Kamran; Riisberg, Ingvild; Johnsen, Geir; et al. (15 September 2007). "Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokonta)—a bloom-forming ichthyotoxic flagellate from the Skagerrak, Norway". Journal of Phycology. 43 (5): 1054–1070. Bibcode:2007JPcgy..43.1054E. doi:10.1111/j.1529-8817.2007.00390.x. hdl:10852/11590.
  187. ^ Eikrem, Wenche; Edvardsen, Bente; Throndsen, Jahn (2009). "Research note: Renaming Verrucophora farcimen Eikrem, Edvardsen et Throndsen". Phycological Research. 57 (3): 170–170. doi:10.1111/j.1440-1835.2009.00535.x. ISSN 1322-0829.
  188. ^ Moestrup, Øjvind (26 January 1995). "Current status of chrysophyte 'splinter groups': synurophytes, pedinellids, silicoflagellates". In Sandgren, Craig D.; Smol, John P.; Kristiansen, Jørgen (eds.). Chrysophyte Algae: Ecology, Physiology and Development. Cambridge University Press. pp. 75–92. doi:10.1017/cbo9780511752292.005. ISBN 978-0-521-46260-0.
  189. ^ Sekiguchi, Hiroshi; Kawachi, Masanobu; Nakayama, Takeshi; Inouye, Isao (2003). "A taxonomic re-evaluation of the Pedinellales (Dictyochophyceae), based on morphological, behavioural and molecular data". Phycologia. 42 (2): 165–182. doi:10.2216/i0031-8884-42-2-165.1. ISSN 0031-8884.
  190. ^ Cavalier-Smith, T.; Chao, E.E.; Allsopp, M.T.E.P. (April 1995). "Ribosomal RNA Evidence for Chloroplast Loss within Heterokonta: Pedinellid Relationships and a Revised Classification of Ochristan Algae". Archiv für Protistenkunde. 145 (3–4): 209–220. doi:10.1016/S0003-9365(11)80316-7.
  191. ^ Safonov, Pavel; Berdieva, Mariia; Nassonova, Elena; Skarlato, Sergei; Pozdnyakov, Ilya (2024). "The first arctic strain of Rhizochromulina: Morphology, ultrastructure, and position in the evolutionary tree of the order Rhizochromulinales (Heterokontophyta, Dictyochophyceae)". European Journal of Protistology. 92: 126050. doi:10.1016/j.ejop.2023.126050.
  192. ^ Hosoi‐Tanabe, Shoko; Honda, Daiske; Fukaya, Sachiko; Otake, Isamu; Inagaki, Yuji; Sako, Yoshihiko (2007). "Proposal of Pseudochattonella verruculosa gen. nov., comb. nov. (Dictyochophyceae) for a formar raphidophycean alga Chattonella verruculosa, based on 18S rDNA phylogeny and ultrastructural characteristics". Phycological Research. 55 (3): 185–192. doi:10.1111/j.1440-1835.2007.00461.x. ISSN 1322-0829.
  193. ^ a b Han, Kwi Young; Graf, Louis; Reyes, Carolina P.; Melkonian, Barbara; Andersen, Robert A.; et al. (February 2018). "A Re-investigation of Sarcinochrysis marina (Sarcinochrysidales, Pelagophyceae) from its Type Locality and the Descriptions of Arachnochrysis, Pelagospilus, Sargassococcus and Sungminbooa genera nov". Protist. 169 (1): 79–106. doi:10.1016/j.protis.2017.12.004. ISSN 1434-4610. PMID 29427838.
  194. ^ Daugbjerg, Niels; Lara, Cecilie; Gai, Frederik F.; Lovejoy, Connie (2024). "Plocamiomonas psychrophila gen. et sp. nov. (Pelagophyceae, Heterokontophyta), an Arctic marine nanoflagellate characterized by microscopy, pigments and molecular phylogeny". European Journal of Phycology. 59 (4): 362–378. Bibcode:2024EJPhy..59..362D. doi:10.1080/09670262.2024.2353940.
  195. ^ Kuwata, Akira; Yamada, Kazumasa; Ichinomiya, Mutsuo; Yoshikawa, Shinya; Tragin, Margot; Vaulot, Daniel; Lopes dos Santos, Adriana (29 October 2018). "Bolidophyceae, a Sister Picoplanktonic Group of Diatoms – A Review". Frontiers in Marine Science. 5. doi:10.3389/fmars.2018.00370. ISSN 2296-7745.
  196. ^ Guiry, Michael D. (2024). "How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing". Journal of Phycology. 60 (2): 214–228. doi:10.1111/jpy.13431. PMID 38245909.
  197. ^ Guiry, Michael D. (21 October 2017). "The phylum name Bacillariophyta and other names of phyla used to include the diatoms" (PDF). Notulae algarum. 37. ISSN 2009-8987.
  198. ^ Medlin, Linda K. (1 January 2016). "Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence". Phycologia. 55 (1): 79–103. doi:10.2216/15-105.1. ISSN 0031-8884.
  199. ^ Nakov, Teofil; Beaulieu, Jeremy M.; Alverson, Andrew J. (2018). "Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta)". New Phytologist. 219 (1): 462–473. doi:10.1111/nph.15137. ISSN 0028-646X. PMC 6099383. PMID 29624698.
  200. ^ Alverson, Andrew J.; Roberts, Wade R.; Ruck, Elizabeth C.; Nakov, Teofil; Ashworth, Matthew P.; Bryłka, Karolina; Downey, Kala M.; Kociolek, J. Patrick; Parks, Matthew; Pinseel, Eveline; Theriot, Edward C.; Tye, Simon P.; Witkowski, Andrzej; Beaulieu, Jeremy M.; Wickett, Norman J. (3 June 2025). "Phylogenomics reveals the slow-burning fuse of diatom evolution". Proceedings of the National Academy of Sciences. 122 (22): e2500153122. doi:10.1073/pnas.2500153122. ISSN 0027-8424. PMC 12146733. PMID 40440071.
  201. ^ Nanjappa, Deepak; Kooistra, Wiebe H. C. F.; Zingone, Adriana (2013). "A reappraisal of the genus Leptocylindrus (Bacillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov". Journal of Phycology. 49 (5): 917–936. doi:10.1111/jpy.12102. ISSN 0022-3646.
  202. ^ Kulikovskiy, Maxim; Maltsev, Yevhen; Andreeva, Svetlana; Glushchenko, Anton; Gusev, Evgeniy; et al. (31 October 2018). "Description of a new diatom genus Dorofeyukea gen. nov. with remarks on phylogeny of the family Stauroneidaceae". Journal of Phycology. 55 (1): 173–185. Bibcode:2019JPcgy..55..173K. doi:10.1111/jpy.12810. PMID 30379324.
  203. ^ Grassé, Pierre-P. (1952). "Classe des zooflagellés Zooflagellata ou Zoomastigina (Euflagellata Claus, 1887): Généralités". In Cuénot, L.; Chatton, E.; Deflandre, G.; Grassé, P.-P.; Hollande, A.; Pavillard, J. (eds.). Traité de zoologie: anatomie, systématique, biologie. Tome I. Fascicule I. Phylogénie, protozoaires: généralités, flagellés. Paris: Masson. pp. 574–578.
  204. ^ a b Adl, Sina M.; Leander, Brian S.; Simpson, Alastair G. B.; Archibald, John M.; Anderson, O. Roger.; et al. (1 August 2007). "Diversity, Nomenclature, and Taxonomy of Protists" (PDF). Systematic Biology. 56 (4): 684–689. doi:10.1080/10635150701494127. ISSN 1076-836X. PMID 17661235. Retrieved 15 July 2025.
  205. ^ Novák, Lukáš V. F.; Treitli, Sebastian C.; Pyrih, Jan; Hałakuc, Paweł; Pipaliya, Shweta V.; Vacek, Vojtěch; Brzoň, Ondřej; Soukal, Petr; Eme, Laura; Dacks, Joel B.; Karnkowska, Anna; Eliáš, Marek; Hampl, Vladimír (2023). "Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria". PLOS Genetics. 19 (12): e1011050. doi:10.1371/journal.pgen.1011050. PMC 10703272. PMID 38060519.
  206. ^ Cavalier-Smith, T. (1 November 2003). "The excavate protozoan phyla Metamonada Grasse emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa". International Journal of Systematic and Evolutionary Microbiology. 53 (6): 1741–1758. doi:10.1099/ijs.0.02548-0. ISSN 1466-5026.
  207. ^ Simpson, Alastair G. B.; Slamovits, Claudio H.; Archibald, John M. (2017). "Protist Diversity and Eukaryote Phylogeny". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 1 (2nd ed.). Cham: Springer International Publishing. pp. 1–22. doi:10.1007/978-3-319-28149-0_45. ISBN 978-3-319-28149-0. LCCN 2017945328.
  208. ^ a b c Boscaro, Vittorio; James, Erick R.; Fiorito, Rebecca; del Campo, Javier; Scheffrahn, Rudolf H.; Keeling, Patrick J. (2024). "Updated classification of the phylum Parabasalia". Journal of Eukaryotic Microbiology. 71 (4): e13035. doi:10.1111/jeu.13035. ISSN 1066-5234.
  209. ^ a b Hampl, Vladimir (2017). "Preaxostyla". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 2 (2nd ed.). Cham: Springer International Publishing. pp. 1139–1174. doi:10.1007/978-3-319-28149-0_8. ISBN 978-3-319-28149-0. LCCN 2017945328.
  210. ^ Adam, Rodney D. (2017). "Diplomonadida". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 2 (2nd ed.). Cham: Springer International Publishing. pp. 1219–1246. doi:10.1007/978-3-319-28149-0_1. ISBN 978-3-319-28149-0. LCCN 2017945328.
  211. ^ a b Kulda, Jaroslav; Nohýnková, Eva; Čepička, Ivan (2017). "Retortamonadida (with Notes on Carpediemonas-Like Organisms and Caviomonadidae". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 2 (2nd ed.). Cham: Springer International Publishing. pp. 1247–1278. doi:10.1007/978-3-319-28149-0_3. ISBN 978-3-319-28149-0. LCCN 2017945328.
  212. ^ Stairs, Courtney W.; Táborský, Petr; Salomaki, Eric D.; Kolisko, Martin; Pánek, Tomáš; Eme, Laura; Hradilová, Miluše; Vlček, Čestmír; Jerlström-Hultqvist, Jon; Roger, Andrew J.; Čepička, Ivan (2021-12-20). "Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes". Current Biology. 31 (24): 5605–5612.e5. doi:10.1016/j.cub.2021.10.010. ISSN 0960-9822. PMID 34710348. S2CID 240054026.
  213. ^ Eglit, Yana; Williams, Shelby K.; Roger, Andrew J.; Simpson, Alastair G. B. (2024). "Characterization of Skoliomonas gen. nov., a haloalkaliphilic anaerobe related to barthelonids (Metamonada)". Journal of Eukaryotic Microbiology. 71 (6). doi:10.1111/jeu.13048. ISSN 1066-5234. PMC 11603281. PMID 39225178.
  214. ^ Cavalier-Smith, Thomas (May 2013). "Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa". European Journal of Protistology. 49 (2): 115–178. doi:10.1016/j.ejop.2012.06.001. PMID 23085100.
  215. ^ Yubuki, Naoji; Huang, Sam S.C.; Leander, Brian S. (2016). "Comparative Ultrastructure of Fornicate Excavates, Including a Novel Free-living Relative of Diplomonads: Aduncisulcus paluster gen. et sp. nov". Protist. 167 (6): 584–596. doi:10.1016/j.protis.2016.10.001.
  216. ^ Yubuki, Naoji; Zadrobílková, Eliška; Čepička, Ivan (2017). "Ultrastructure and Molecular Phylogeny of Iotanema spirale gen. nov. et sp. nov., a New Lineage of Endobiotic Fornicata with Strikingly Simplified Ultrastructure". Journal of Eukaryotic Microbiology. 64 (4): 422–433. doi:10.1111/jeu.12376. ISSN 1066-5234.
  217. ^ a b c Poinar, George (2009). "Early Cretaceous protist flagellates (Parabasalia: Hypermastigia: Oxymonada) of cockroaches (Insecta: Blattaria) in Burmese amber". Cretaceous Research. 30 (5): 1066–1072. doi:10.1016/j.cretres.2009.03.008.
  218. ^ a b c Pánek, Tomáš; Tice, Alexander K.; Corre, Pia; Hrubá, Pavla; Žihala, David; et al. (16 January 2025). "An expanded phylogenomic analysis of Heterolobosea reveals the deep relationships, non-canonical genetic codes, and cryptic flagellate stages in the group". Molecular Phylogenetics and Evolution. 204 108289. doi:10.1016/j.ympev.2025.108289. PMID 39826589.
  219. ^ Cavalier-Smith, Thomas (1993). "Kingdom Protozoa and its 18 phyla". Microbiological Reviews. 57 (4): 953–994. doi:10.1128/mr.57.4.953-994.1993. PMC 372943. PMID 8302218.
  220. ^ Pánek, Tomáš; Simpson, Alastair G. B.; Brown, Matthew W.; Dyer, Betsey Dexter (2017). "Heterolobosea". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 2 (2nd ed.). Cham: Springer International Publishing. pp. 1005–1046. doi:10.1007/978-3-319-28149-0_10. ISBN 978-3-319-28149-0. LCCN 2017945328.
  221. ^ Simpson, Alastair G.B. (1997). "The identity and composition of the Euglenozoa". Archiv für Protistenkunde. 148 (3): 318–328. doi:10.1016/S0003-9365(97)80012-7.
  222. ^ a b Cavalier-Smith, Thomas (2016). "Higher classification and phylogeny of Euglenozoa". European Journal of Protistology. 56: 250–276. doi:10.1016/J.EJOP.2016.09.003. PMID 27889663.
  223. ^ a b c Kostygov, Alexei Y.; Karnkowska, Anna; Votýpka, Jan; Tashyreva, Daria; Maciszewski, Kacper; et al. (2021). "Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses". Open Biology. 11 (3): 200407. doi:10.1098/rsob.200407. PMC 8061765. PMID 33715388.
  224. ^ Lax, Gordon; Lee, Won Je; Eglit, Yana; Simpson, Alastair (2019). "Ploeotids Represent Much of the Phylogenetic Diversity of Euglenids". Protist. 170 (2): 233–257. doi:10.1016/J.PROTIS.2019.03.001. PMID 31102975.
  225. ^ Lax, G.; Kolisko, M.; Eglit, Y.; Lee, W.J.; Yubuki, N.; et al. (June 2021). "Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs". Molecular Phylogenetics and Evolution. 159 107088. doi:10.1016/j.ympev.2021.107088. PMID 33545276.
  226. ^ Lax, Gordon; Keeling, Patrick J. (9 July 2023). "Molecular phylogenetics of sessile Dolium sedentarium, a petalomonad euglenid". Journal of Eukaryotic Microbiology. 70 (5). doi:10.1111/jeu.12991. ISSN 1066-5234. PMID 37424051.
  227. ^ Lax, Gordon; Cho, Anna; Keeling, Patrick J. (13 March 2023). "Phylogenomics of novel ploeotid taxa contribute to the backbone of the euglenid tree". Journal of Eukaryotic Microbiology. 70 (4): e12973. doi:10.1111/jeu.12973. ISSN 1066-5234. PMID 36912454.
  228. ^ Strother, Paul K.; Taylor, Wilson A.; van de Schootbrugge, Bas; Leander, Brian S.; Wellman, Charles H. (2020). "Pellicle ultrastructure demonstrates that Moyeria is a fossil euglenid". Palynology. 44 (3): 461–471. Bibcode:2020Paly...44..461S. doi:10.1080/01916122.2019.1625457.
  229. ^ Lee WJ, Blackmore R, Patterson DJ (1999). "Australian records of two lesser known genera of heterotrophic euglenids – Chasmostoma Massart, 1920 and Jenningsia Schaeffer, 1918". Protistology. 1: 10–16.
  230. ^ Larsen, Jacob; Patterson, David J. (1990). "Some flagellates (Protista) from tropical marine sediments". Journal of Natural History. 24 (4): 801–937. Bibcode:1990JNatH..24..801L. doi:10.1080/00222939000770571.
  231. ^ Lax, Gordon; Simpson, Alastair G.B. (2020). "The Molecular Diversity of Phagotrophic Euglenids Examined Using Single-cell Methods". Protist. 171 (5) 125757. doi:10.1016/J.PROTIS.2020.125757. PMID 33126020.
  232. ^ Goodwin, Joshua D.; Lee, Thomas F.; Kugrens, Paul; Simpson, Alastair G.B. (1 August 2018). "Allobodo chlorophagus n. gen. n. sp., a Kinetoplastid that Infiltrates and Feeds on the Invasive Alga Codium fragile". Protist. 169 (6): 911–925. doi:10.1016/j.protis.2018.07.001. PMID 30445354.
  233. ^ Packer, Julia A.; Zavadska, Daryna; Weston, Elizabeth J.; Eglit, Yana; Richter, Daniel J.; Simpson, Alastair G.B. (27 January 2025). "Characterization of Allobodo yubaba sp. nov. and Novijibodo darinka gen. et sp. nov., cultivable free-living species of the phylogenetically enigmatic kinetoplastid taxon Allobodonidae". Journal of Eukaryotic Microbiology. 72 (1): e13072. doi:10.1111/jeu.13072. PMC 11771631. PMID 39868642.
  234. ^ Belyaev, Artem O.; Zagumyonnyi, Dmitriy G.; Mylnikov, Alexander P.; Tikhonenkov, Denis V. (2022). "The Morphology, Ultrastructure and Molecular Phylogeny of a New Soil-Dwelling Kinetoplastid Avlakibodo gracilis gen. et sp. nov. (Neobodonida; Kinetoplastea)". Protist. 173 (4): 125885. doi:10.1016/j.protis.2022.125885. PMID 35667307. S2CID 248711669.
  235. ^ Poinar, George; Poinar, Roberta (1 September 2004). "Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese Amber". Protist. 155 (3): 305–310. doi:10.1078/1434461041844259. PMID 15552057.
  236. ^ Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M.A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H.A; Jakobsen, K.S (28 April 2006). "Telonemia, a new protist phylum with affinity to chromist lineages". Proceedings of the Royal Society B: Biological Sciences. 273 (1595): 1833–1842. doi:10.1098/rspb.2006.3515. PMC 1634789. PMID 16790418.
  237. ^ Strassert, Jürgen F H; Jamy, Mahwash; Mylnikov, Alexander P; Tikhonenkov, Denis V; Burki, Fabien; Shapiro, Beth (April 2019). "New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life". Molecular Biology and Evolution. 36 (4): 757–765. doi:10.1093/molbev/msz012. PMC 6844682. PMID 30668767.
  238. ^ Shalchian-Tabrizi, K; Kauserud, H; Massana, R; Klaveness, D; Jakobsen, KS (18 April 2007). "Analysis of Environmental 18S Ribosomal RNA Sequences reveals Unknown Diversity of the Cosmopolitan Phylum Telonemia". Protist. 158 (2): 173–180. doi:10.1016/j.protis.2006.10.003. PMID 17196879.
  239. ^ Tikhonenkov DV, Jamy M, Borodina AS, Belyaev AO, Zagumyonnyi DG, Prokina KI, Mylnikov AP, Burki F, Karpov SA (2022). "On the origin of TSAR: morphology, diversity and phylogeny of Telonemia". Open Biology. 12 (3): 210325. doi:10.1098/rsob.210325. PMC 8924772. PMID 35291881.