Finite projective planes
editAny finite projective plane of order n, PG(2,n), is an (n2+n+1)n+1 configuration. Since projective planes are known to exist for all orders n which are powers of primes, these constructions provide infinite families of symmetric configurations.
PG(2,k) exist uniquely for k=2,3,4,5,7,8. For k=9, there are 4 nonisomorphic forms, only one Desarguesian. There are are no Desarguesian solutions for composite k=6,10,12... See Bruck-Ryser-Chowla Theorem.
Automorphisms for PG(2,n), as prime power n=qm are (m)(n3-1)(n3-n)(n3-n2)/(n-1).[1]
Reducing projective plane, (n2+n+1)n+1, by 1 line and its n+1 points becomes [(n2)n+1 n(n+1)n]. Automorphisms are reduced by factor n2+n+1. This configuration is an finite affine planes of order n, AP(n). As an affine plane, lines can be partitioned into n+1 sets of n parallel lines and each set can removed independently to create smaller symmetric configurations. Each set of parallel lines pass through every point.
Reducing finite affine plane, [(n2)n+1 n(n+1)n], by n lines further becomes a self dual configuration (n2)n. Automorphisms are reduced by factor n+1. This reduction can be repeated, [(n2)i nin], i=2...n, ending in dual of the complete bipartite graph.
Reducing finite affine plane, [(n2)n+1 n(n+1)n], by 1 point and n+1 lines becomes a self dual configuration (n2-1)n. Automorphisms are reduced by factor n2.
n | Projective plane | Affine plane | Self dual subconfigurations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name | Configuration | Aut. group | Order | Name | Configuration | Aut. order | Config | Aut | Config | Aut | |
2 | Fano plane | (73) | PGL(3,2) | 168 | AG(2,2) | (43 62) | 24 | (42) | 8 | (32) | 6 |
3 | PG(2,3) | (134) | PGL(3,3) | 5,616 | AG(2,3) | (94 123) | 432 | (93) | 108 | (83) | 48 |
4 | PG(2,4) | (215) | PΓL(3,4) | 120,960 | AG(2,4) | (165 204) | 1152 | (164) | 7560 | (154) | 360 |
5 | PG(2,5) | (316) | PGL(3,5) | 372,000 | AG(2,5) | (256 305) | 12,000 | (255) | 2000 | (245) | 480 |
6 | Does not exist | – | – | – | – | – | – | – | – | – | – |
7 | PG(2,7) | (578) | PGL(3,7) | 5,630,688 | AG(2,7) | (498 567) | 98,784 | (497) | 12,348 | (487) | 2,016 |
8 | PG(2,8) | (739) | PΓL(3,8) | 49,448,448 | AG(2,8) | (649 728) | 677,376 | (648) | 75,264 | (638) | 10,584 |
9 | PG(2,9) | (9110) | PΓL(3,9) | 84,913,920 | AG(2,9) | (8110 909) | 933,120 | (819) | 93,312 | (809) | 11,520 |
10 | Does not exist | – | – | – | – | – | – | – | – | – | – |
11 | PG(2,11) | (13312) | PGL(3,11) | 212,427,600 | AG(2,11) | (12112 13211) | 1,597,200 | (12111) | 133,100 | (12011) | 13,200 |
PG(2,2)
editPG(2,2), is the Fano plane, self dual configuration (73) has 168 automorphisms = (23-1)(23-2)(23-22)/(2-1) = 7×6×4
- Reducing 1 line and its 3 points produces the affine plane of order 2, AG(2,2), which the complete graph K4 (43 62), aut(168/7 = 24)
- Reducing further 2 lines produces complete bipartite graph K2,2, self dual square (42), aut(24/(2+1) = 8).
- Reducing further 1 point and its 3 lines produces complete graph K3 self dual triangle (32), aut(24/22 = 6)
(73) is a cyclic configuration with generator line {0,1,3}7. (42), has cyclic generator line {0,1}4. (32) has cyclic generator line {0,1}3.
PG(2,3)
editPG(2,3) is self dual configuration (134), has aut(5616) = (33-1)(33-3)(33-32)/(3-1) = 26×24×18/2
- Reducing 1 line and its 4 points produces finite affine plane, AG(2,3), (94 123), the Hesse configuration, aut(5616/13 = 432)
- Reducing further 3 lines produces self dual (93), the Pappus configuration, aut(432/(3+1) = 108)
- Reducing further 3 lines produces (92 63), dual of the complete bipartite graph K3,3, aut(2×(3!)2) = 72.
- alternately reducing 1 point and its 3 lines makes (62+22 63), aut(108/3) =36
- reducing 2 lines and 6 points makes (42), aut(8)
- Reducing further 1 point and its 4 lines produces self dual (83), cyclic generator line {0,1,3}8, the Möbius–Kantor configuration, aut(432/32 = 48)
- Reducing further 3 lines produces self dual (93), the Pappus configuration, aut(432/(3+1) = 108)
(134) is cyclic configuration, with a generator line as {0,1,4,6}13. (83) is cyclic configuration, with a generator line as {0,1,3}8.
PG(2,4) | (-1 L -4 P) | (-4 L -4 P) | (-7 L -4 P) | (-5 L -5 P) |
---|---|---|---|---|
(134) |
(94 123) |
(93) |
(92 63) |
(83) |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 |
0 | 3 | 6 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
1 | 4 | 7 | 3 | 4 | 5 | 4 | 5 | 3 | 5 | 3 | 4 |
2 | 5 | 8 | 6 | 7 | 8 | 8 | 6 | 7 | 7 | 8 | 6 |
Set 1 | Set 2 | Set 3 | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 4 | 0 | 1 | 2 | 0 | 2 | 3 |
3 | 2 | 5 | 5 | 4 | 3 | 1 | 5 | 4 |
6 | 6 | 6 | 7 | 7 | 7 | 8 | 8 | 8 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 |
PG(2,4)
editPG(2,4) is self dual configuration (215) and has aut(120,960) = (2)(43-1)(43-4)(43-42)/(4-1) = 2×63×60×48/3
- Reducing 1 line and its 5 points produces finite affine plane, AG(2,4), (165 204), aut(120960/21 = 5,760)
- Reducing further 4 lines produces self dual (164), aut(5760/(4+1) = 1152)
- Reducing further 4 lines produces (163 124), dual of the Reye configuration, aut(5760/10 = 576)
- Reducing further 4 lines ends at (162 84), dual of complete bipartite graph K4,4, aut(2×(4!)2) = 1152.
- Reducing further 1 point and 5 its lines produces self dual (154), aut(5760/42 = 360)
- Reducing further 4 lines produces self dual (164), aut(5760/(4+1) = 1152)
(215) is a cyclic configuration with generator line {0,3,4,9,11}21.[2] (154) is a cyclic configuration with generating line {0,1,3,7}15.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 0 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 0 | 1 | 2 |
1 | 2 | 13 | 14 | 12 | 13 | 14 | 15 | 3 | 16 | 5 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 12 | 14 | 15 | 15 | 16 | 16 | 3 | 4 | 4 | 6 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 1 | 2 |
16 | 13 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 5 | 11 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 2 | 15 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 10 | 1 | 2 | 1 | 2 | 12 | 13 | 14 | 15 | 14 | 16 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 |
7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
PG(2,5)
editPG(2,5) is self dual configuration is (316) and has aut(372,000) = (53-1)(53-5)(53-52)/(5-1) = 124×120×100/4
- Reducing 1 line and its 6 points produces finite affine plane AG(2,5), configuration (256 305) aut(372000/31 = 12,000)
- Reducing further 5 lines produces self dual (255), aut(12000/(5+1) = 2000)
- Reducing further multiples of 5 lines produces (254 205), (253 155) and ending at (252 105), dual of complete bipartite graph K5,5, aut(2×(5!)2) = 28,800.
- Reducing further 1 point and its 6 lines produces self dual (245), aut(12000/52 = 480)
- Reducing further 5 lines produces self dual (255), aut(12000/(5+1) = 2000)
(316) is a cyclic configuration with generator line {0,1,3,8,12,18}31. (245) is a cyclic configuration with generator line {0,1,4,9,11}24.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 | 2 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 1 | 2 | 3 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
PG(2,6)
editPG(2,6) would be (437), has no cyclic generators and the finite geometry doesn't exist as 6 is composite.
PG(2,7)
editPG(2,7) is self dual configuration (578) and has aut(5,630,688) = (73-1)(73-7)(73-72)/(7-1) = 342×336×294/6
- Reducing 1 line and its 8 points produces finite affine plane AG(2,7), configuration (498 567), aut(5630688/57 = 98,784)
- Reducing further 7 lines produces self dual (497), aut(98784/(7+1) = 12,348)
- Reducing further multiples 7 lines produces (496 427), (495 357), (494 287), (493 217) and ending at (492 147), dual of complete bipartite graph K7,7, aut(2×(7!)2) = 50,803,200.
- Reducing further 1 point and its 8 lines produces self dual (487), aut(98784/72 = 2016)
- Reducing further 7 lines produces self dual (497), aut(98784/(7+1) = 12,348)
(578) is a cyclic configuration with generator line {0,1,3,13,32,36,43,52}57. (487) is a cyclic configuration with generator line {0, 1, 3, 15, 20, 38, 42}48.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 0 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 0 | 1 | 2 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |
52 | 53 | 54 | 55 | 56 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |
PG(2,8)
editPG(2,8) is self dual configuration (739) has aut(49,448,448) = (3)(83-1)(83-8)(83-82)/(8-1) = 3×511×504×448/7
- Reducing 1 line and its 9 points produces finite affine plane AG(2,8), configuration (649 728), aut(49448448/73 = 677,376)
- Reducing further 8 lines produces self dual (648), aut(677376/(8+1) = 75,264)
- Reducing further multiples of 8 lines produces (647 568), (646 488), (645 408), (644 328), (643 248), and ending at (642 168), dual of complete bipartite graph K8,8, aut(2×(8!)2) = 3,251,404,800.
- Reducing further 1 point and its 9 lines produces self dual (638), aut(677376/82 = 10,584)
- Reducing further 8 lines produces self dual (648), aut(677376/(8+1) = 75,264)
(739) is a cyclic configuration with generator line {0,1,3,7,15,31,36,54,63}73.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 0 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 0 | 1 | 2 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 |
63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 |
PG(2,9)
editPG(2,9) is a self dual configuration (9110) with 4 unique nonisomorphic solutions, only one Desarguesian, aut(84,913,920) = 2(93-1)(93-9)(93-92)/(9-1) = 2×728×720×648/8
- Reducing 1 line and its 9 points produces finite affine plane AG(2,9), configuration (8110 909), aut(84913920/91 = 933,120)
- Reducing further 8 lines produces self dual (819), aut(933120/(9+1) = 93,312)
- Reducing further multiples of 8 lines produces (818 729), (647 649), (816 569), (815 459), (814 369), (813 279), and ending at (812 189), dual of complete bipartite graph K9,9, aut(2×(9!)2) = 263,363,788,800.
- Reducing further 1 point and its 9 lines produces self dual (809), aut(933120/92 = 11,520)
- Reducing further 8 lines produces self dual (819), aut(933120/(9+1) = 93,312)
It has cyclic generator {0,1,3,9,27,49,56,61,77,81}91.
PG(2,10)
editPG(2,10) would be (11111), but as 10 is composite, there are no solutions.
PG(2,11)
editPG(2,11) is self dual configuration (13312). Aut(212,427,600) = (113-1)(113-11)(113-112)/(11-1) = 1330×1320×1210/10
Notes
edit- ^ Finite Geometries, by Peter Dembowski (1968)
- ^ Grünbaum (2009), p.234
References
edit- Berman, Leah W., "Movable (n4) configurations", The Electronic Journal of Combinatorics, 13 (1): R104.
- Betten, A; Brinkmann, G.; Pisanski, T. (2000), "Counting symmetric configurations", Discrete Applied Mathematics, 99 (1–3): 331–338, doi:10.1016/S0166-218X(99)00143-2.
- Boben, Marko; Gévay, Gábor; Pisanski, T. (2015), "Danzer's configuration revisited", Advances in Geometry, 15 (4): 393–408.
- Coxeter, H.S.M. (1999), "Self-dual configurations and regular graphs", The Beauty of Geometry, Dover, ISBN 0-486-40919-8
- Dembowski, Peter (1968), Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-Verlag, ISBN 3-540-61786-8, MR 0233275
- Gévay, Gábor (2014), "Constructions for large point-line (nk) configurations", Ars Mathematica Contemporanea, 7: 175-199.
- Gropp, Harald (1990), "On the existence and non-existence of configurations nk", Journal of Combinatorics and Information System Science, 15: 34–48
- Gropp, Harald (1997), "Configurations and their realization", Discrete Mathematics, 174 (1–3): 137–151, doi:10.1016/S0012-365X(96)00327-5.
- Grünbaum, Branko (2006), "Configurations of points and lines", in Davis, Chandler; Ellers, Erich W. (eds.), The Coxeter Legacy: Reflections and Projections, American Mathematical Society, pp. 179–225.
- Grünbaum, Branko (2008), "Musing on an example of Danzer's", European Journal of Combinatorics, 29: 1910-1918.
- Grünbaum, Branko (2009), Configurations of Points and Lines, Graduate Studies in Mathematics, vol. 103, American Mathematical Society, ISBN 978-0-8218-4308-6.
- Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), Chelsea, pp. 94–170, ISBN 0-8284-1087-9
{{citation}}
: ISBN / Date incompatibility (help). - Kelly, L. M. (1986), "A resolution of the Sylvester–Gallai problem of J. P. Serre", Discrete and Computational Geometry, 1 (1): 101–104, doi:10.1007/BF02187687.
- Pisanski, Tomaž; Servatius, Brigitte (2013), Configurations from a Graphical Viewpoint, Springer, ISBN 9780817683641.
- Foundations of Projective Geometry Robin Hartshorne (1967) 91 pages
- An Introduction to Finite Projective Planes 2018