User:Tomruen/Finite projective plane configurations

Finite projective planes

edit

Any finite projective plane of order n, PG(2,n), is an (n2+n+1)n+1 configuration. Since projective planes are known to exist for all orders n which are powers of primes, these constructions provide infinite families of symmetric configurations.

PG(2,k) exist uniquely for k=2,3,4,5,7,8. For k=9, there are 4 nonisomorphic forms, only one Desarguesian. There are are no Desarguesian solutions for composite k=6,10,12... See Bruck-Ryser-Chowla Theorem.

Automorphisms for PG(2,n), as prime power n=qm are (m)(n3-1)(n3-n)(n3-n2)/(n-1).[1]

Reducing projective plane, (n2+n+1)n+1, by 1 line and its n+1 points becomes [(n2)n+1 n(n+1)n]. Automorphisms are reduced by factor n2+n+1. This configuration is an finite affine planes of order n, AP(n). As an affine plane, lines can be partitioned into n+1 sets of n parallel lines and each set can removed independently to create smaller symmetric configurations. Each set of parallel lines pass through every point.

Reducing finite affine plane, [(n2)n+1 n(n+1)n], by n lines further becomes a self dual configuration (n2)n. Automorphisms are reduced by factor n+1. This reduction can be repeated, [(n2)i nin], i=2...n, ending in dual of the complete bipartite graph.

Reducing finite affine plane, [(n2)n+1 n(n+1)n], by 1 point and n+1 lines becomes a self dual configuration (n2-1)n. Automorphisms are reduced by factor n2.

Summary
n Projective plane Affine plane Self dual subconfigurations
Name Configuration Aut. group Order Name Configuration Aut. order Config Aut Config Aut
2 Fano plane (73) PGL(3,2) 168 AG(2,2) (43 62) 24 (42) 8 (32) 6
3 PG(2,3) (134) PGL(3,3) 5,616 AG(2,3) (94 123) 432 (93) 108 (83) 48
4 PG(2,4) (215) PΓL(3,4) 120,960 AG(2,4) (165 204) 1152 (164) 7560 (154) 360
5 PG(2,5) (316) PGL(3,5) 372,000 AG(2,5) (256 305) 12,000 (255) 2000 (245) 480
6 Does not exist
7 PG(2,7) (578) PGL(3,7) 5,630,688 AG(2,7) (498 567) 98,784 (497) 12,348 (487) 2,016
8 PG(2,8) (739) PΓL(3,8) 49,448,448 AG(2,8) (649 728) 677,376 (648) 75,264 (638) 10,584
9 PG(2,9) (9110) PΓL(3,9) 84,913,920 AG(2,9) (8110 909) 933,120 (819) 93,312 (809) 11,520
10 Does not exist
11 PG(2,11) (13312) PGL(3,11) 212,427,600 AG(2,11) (12112 13211) 1,597,200 (12111) 133,100 (12011) 13,200
 
Fano plane (73) and its reduced configurations, (43 62), (42) and (32)

PG(2,2)

edit

PG(2,2), is the Fano plane, self dual configuration (73) has 168 automorphisms = (23-1)(23-2)(23-22)/(2-1) = 7×6×4

  • Reducing 1 line and its 3 points produces the affine plane of order 2, AG(2,2), which the complete graph K4 (43 62), aut(168/7 = 24)
  • Reducing further 1 point and its 3 lines produces complete graph K3 self dual triangle (32), aut(24/22 = 6)

(73) is a cyclic configuration with generator line {0,1,3}7. (42), has cyclic generator line {0,1}4. (32) has cyclic generator line {0,1}3.

PG(2,2) -1 line, -3 points -3 line and points -4 line and points
(73) (43 62) = K4 (42) = K2,2 (32) = K3
 
(73)
   
(43 62)
 
(42)
 
(32)
{0,1,3}7 {0,1}4 {0,1}3
0 1 2 3 4 5 6
1 2 3 4 5 6 0
3 4 5 6 0 1 2
0 0 0 1 1 2
1 2 3 2 3 3
0 1 2 3
1 2 3 0
0 1 2
1 2 3
 
PG(2,3), (134) and reduced configurations

PG(2,3)

edit

PG(2,3) is self dual configuration (134), has aut(5616) = (33-1)(33-3)(33-32)/(3-1) = 26×24×18/2

  • Reducing 1 line and its 4 points produces finite affine plane, AG(2,3), (94 123), the Hesse configuration, aut(5616/13 = 432)
    • Reducing further 3 lines produces self dual (93), the Pappus configuration, aut(432/(3+1) = 108)
      • Reducing further 3 lines produces (92 63), dual of the complete bipartite graph K3,3, aut(2×(3!)2) = 72.
      • alternately reducing 1 point and its 3 lines makes (62+22 63), aut(108/3) =36
        • reducing 2 lines and 6 points makes (42), aut(8)
    • Reducing further 1 point and its 4 lines produces self dual (83), cyclic generator line {0,1,3}8, the Möbius–Kantor configuration, aut(432/32 = 48)

(134) is cyclic configuration, with a generator line as {0,1,4,6}13. (83) is cyclic configuration, with a generator line as {0,1,3}8.

PG(2,4) (-1 L -4 P) (-4 L -4 P) (-7 L -4 P) (-5 L -5 P)
 
(134)
 
(94 123)
 
(93)
 
(92 63)
 
(83)
(134) configuration table
0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 0
4 5 6 7 8 9 10 11 12 0 1 2 3
6 7 8 9 10 11 12 0 1 2 3 4 5
(94 123) configuration table
0 3 6 0 1 2 0 1 2 0 1 2
1 4 7 3 4 5 4 5 3 5 3 4
2 5 8 6 7 8 8 6 7 7 8 6
Pappas (93) configuration
Set 1 Set 2 Set 3
0 1 4 0 1 2 0 2 3
3 2 5 5 4 3 1 5 4
6 6 6 7 7 7 8 8 8
(83) configuration table
0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
3 4 5 6 7 0 1 2
 
PG(2,4), (215) and reduced configurations

PG(2,4)

edit

PG(2,4) is self dual configuration (215) and has aut(120,960) = (2)(43-1)(43-4)(43-42)/(4-1) = 2×63×60×48/3

  • Reducing 1 line and its 5 points produces finite affine plane, AG(2,4), (165 204), aut(120960/21 = 5,760)
    • Reducing further 4 lines produces self dual (164), aut(5760/(4+1) = 1152)
    • Reducing further 1 point and 5 its lines produces self dual (154), aut(5760/42 = 360)

(215) is a cyclic configuration with generator line {0,3,4,9,11}21.[2] (154) is a cyclic configuration with generating line {0,1,3,7}15.

(215) configuration table
0 1 2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13 14 15
4 5 6 7 8 9 10 11 12 13 14 15 16
9 10 11 12 13 14 15 16 17 18 19 20 0
11 12 13 14 15 16 17 18 19 20 0 1 2
(165 204) configuration table
1 2 13 14 12 13 14 15 3 16 5 3 4 5 6 7 8 9 10 11
12 12 14 15 15 16 16 3 4 4 6 6 7 8 9 10 11 1 1 2
16 13 3 4 5 6 7 8 9 5 11 7 8 9 10 11 12 13 2 15
3 4 5 6 7 8 9 10 11 10 1 2 1 2 12 13 14 15 14 16
(154) configuration table
0 1 2 3 4 5 6 7 8 9 10 11 0 1 2
1 2 3 4 5 6 7 8 9 10 11 0 1 2 3
3 4 5 6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 10 11 0 1 2 3 4 5 6 7 8 9
 
PG(2,5), (316) and reduced configurations

PG(2,5)

edit

PG(2,5) is self dual configuration is (316) and has aut(372,000) = (53-1)(53-5)(53-52)/(5-1) = 124×120×100/4

  • Reducing 1 line and its 6 points produces finite affine plane AG(2,5), configuration (256 305) aut(372000/31 = 12,000)
    • Reducing further 5 lines produces self dual (255), aut(12000/(5+1) = 2000)
      • Reducing further multiples of 5 lines produces (254 205), (253 155) and ending at (252 105), dual of complete bipartite graph K5,5, aut(2×(5!)2) = 28,800.
    • Reducing further 1 point and its 6 lines produces self dual (245), aut(12000/52 = 480)

(316) is a cyclic configuration with generator line {0,1,3,8,12,18}31. (245) is a cyclic configuration with generator line {0,1,4,9,11}24.

(316) configuration table
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0 1 2
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0 1 2 3 4 5 6 7
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0 1 2 3 4 5 6 7 8 9 10 11
18 19 20 21 22 23 24 25 26 27 28 29 30 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(245) configuration table
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10

PG(2,6)

edit

PG(2,6) would be (437), has no cyclic generators and the finite geometry doesn't exist as 6 is composite.

PG(2,7)

edit

PG(2,7) is self dual configuration (578) and has aut(5,630,688) = (73-1)(73-7)(73-72)/(7-1) = 342×336×294/6

  • Reducing 1 line and its 8 points produces finite affine plane AG(2,7), configuration (498 567), aut(5630688/57 = 98,784)
    • Reducing further 7 lines produces self dual (497), aut(98784/(7+1) = 12,348)
      • Reducing further multiples 7 lines produces (496 427), (495 357), (494 287), (493 217) and ending at (492 147), dual of complete bipartite graph K7,7, aut(2×(7!)2) = 50,803,200.
    • Reducing further 1 point and its 8 lines produces self dual (487), aut(98784/72 = 2016)

(578) is a cyclic configuration with generator line {0,1,3,13,32,36,43,52}57. (487) is a cyclic configuration with generator line {0, 1, 3, 15, 20, 38, 42}48.

(578) configuration table
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 0 1 2
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 0 1 2 3 4 5 6 7 8 9 10 11 12
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
43 44 45 46 47 48 49 50 51 52 53 54 55 56 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
52 53 54 55 56 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

PG(2,8)

edit

PG(2,8) is self dual configuration (739) has aut(49,448,448) = (3)(83-1)(83-8)(83-82)/(8-1) = 3×511×504×448/7

  • Reducing 1 line and its 9 points produces finite affine plane AG(2,8), configuration (649 728), aut(49448448/73 = 677,376)
    • Reducing further 8 lines produces self dual (648), aut(677376/(8+1) = 75,264)
      • Reducing further multiples of 8 lines produces (647 568), (646 488), (645 408), (644 328), (643 248), and ending at (642 168), dual of complete bipartite graph K8,8, aut(2×(8!)2) = 3,251,404,800.
    • Reducing further 1 point and its 9 lines produces self dual (638), aut(677376/82 = 10,584)

(739) is a cyclic configuration with generator line {0,1,3,7,15,31,36,54,63}73.

(739) configuration table
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 0 1 2
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 0 1 2 3 4 5 6
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
63 64 65 66 67 68 69 70 71 72 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

PG(2,9)

edit

PG(2,9) is a self dual configuration (9110) with 4 unique nonisomorphic solutions, only one Desarguesian, aut(84,913,920) = 2(93-1)(93-9)(93-92)/(9-1) = 2×728×720×648/8

  • Reducing 1 line and its 9 points produces finite affine plane AG(2,9), configuration (8110 909), aut(84913920/91 = 933,120)
    • Reducing further 8 lines produces self dual (819), aut(933120/(9+1) = 93,312)
      • Reducing further multiples of 8 lines produces (818 729), (647 649), (816 569), (815 459), (814 369), (813 279), and ending at (812 189), dual of complete bipartite graph K9,9, aut(2×(9!)2) = 263,363,788,800.
    • Reducing further 1 point and its 9 lines produces self dual (809), aut(933120/92 = 11,520)

It has cyclic generator {0,1,3,9,27,49,56,61,77,81}91.

PG(2,10)

edit

PG(2,10) would be (11111), but as 10 is composite, there are no solutions.

PG(2,11)

edit

PG(2,11) is self dual configuration (13312). Aut(212,427,600) = (113-1)(113-11)(113-112)/(11-1) = 1330×1320×1210/10

Notes

edit
  1. ^ Finite Geometries, by Peter Dembowski (1968)
  2. ^ Grünbaum (2009), p.234

References

edit
  • Berman, Leah W., "Movable (n4) configurations", The Electronic Journal of Combinatorics, 13 (1): R104.
  • Betten, A; Brinkmann, G.; Pisanski, T. (2000), "Counting symmetric configurations", Discrete Applied Mathematics, 99 (1–3): 331–338, doi:10.1016/S0166-218X(99)00143-2.
  • Boben, Marko; Gévay, Gábor; Pisanski, T. (2015), "Danzer's configuration revisited", Advances in Geometry, 15 (4): 393–408.
  • Coxeter, H.S.M. (1999), "Self-dual configurations and regular graphs", The Beauty of Geometry, Dover, ISBN 0-486-40919-8
  • Dembowski, Peter (1968), Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-Verlag, ISBN 3-540-61786-8, MR 0233275
  • Gévay, Gábor (2014), "Constructions for large point-line (nk) configurations", Ars Mathematica Contemporanea, 7: 175-199.
  • Gropp, Harald (1990), "On the existence and non-existence of configurations nk", Journal of Combinatorics and Information System Science, 15: 34–48
  • Gropp, Harald (1997), "Configurations and their realization", Discrete Mathematics, 174 (1–3): 137–151, doi:10.1016/S0012-365X(96)00327-5.
  • Grünbaum, Branko (2006), "Configurations of points and lines", in Davis, Chandler; Ellers, Erich W. (eds.), The Coxeter Legacy: Reflections and Projections, American Mathematical Society, pp. 179–225.
  • Grünbaum, Branko (2008), "Musing on an example of Danzer's", European Journal of Combinatorics, 29: 1910-1918.
  • Grünbaum, Branko (2009), Configurations of Points and Lines, Graduate Studies in Mathematics, vol. 103, American Mathematical Society, ISBN 978-0-8218-4308-6.
  • Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), Chelsea, pp. 94–170, ISBN 0-8284-1087-9 {{citation}}: ISBN / Date incompatibility (help).
  • Kelly, L. M. (1986), "A resolution of the Sylvester–Gallai problem of J. P. Serre", Discrete and Computational Geometry, 1 (1): 101–104, doi:10.1007/BF02187687.
  • Pisanski, Tomaž; Servatius, Brigitte (2013), Configurations from a Graphical Viewpoint, Springer, ISBN 9780817683641.